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Summary

A reusable metallic thermal protection system

(TPS), called superalloy honeycomb prepackaged

TPS, has been developed for vehicles with maximum

surface temperatures of up to 2000°F. An array of

two 12- by 12-in. panels was subjccted to radiant
heating tests that simulated entry temperature and

pressure histories for the Space Shuttle. Results in-

dicate that this thermal protection system, with a
mass of 2.201 lbm/ft 2, can successfully prevent the

typical aluminum primary structure of an entry ve-
hicle like tile Space Shuttle from exceeding tempera-

turcs greater than 350°F at a location on the vehiclc
where the maximum surface temperature is 1900_F.

A comparison of measured temperatures with tem-
peratures calculated with a finite-element analysis

shows that the maximum measured temperature of

the aluminum support plate (304°F) agrccs with the

maximum calculated temperature (312°F). Acoustic

tests performed on the two-panel array caused no

settling of the fiberous insulation contained within
the panels and caused no change in thermal perfor-

mance. A flat array of 20 panels was exposed to
aerothermal flow conditions at a Mach number of

6.75. The panels were installed in a worst-case ori-

entation with the gaps between the panels parallel
to the flow. Results from the aerothermal tests indi-

cated that convective heating occurred from hot gas

flow in the gaps between the panels. Proposed design

changes to prevent gap heating include orienting pan-

els so that gaps are not parallel to the flow and using

a packaged, compressible gap-filler material between
panels to block hot gas flow in the gaps.

Results from these thermal, acoustic, and acro-

thermal tests show that the superalloy honeycomb

TPS panels can repeatedly endure a realistic entry
environment and maintain their effectiveness. The

panels limit the primary-structure temperature, have

low mass, and exhibit tolerance to damage in an
aerothermal environment. Based on these tests, this

thermal protection system appears to be a viable

candidate for use on future hypcrsonic vehicles like

the Space Shuttle.

Introduction

Space transportation vehicles entering the Earth's

atmosphere at hypersonic speeds encounter aero-
dynamic heating. Some form of thermal protection

is usually required to limit the maximum tempera-

ture of the primary structure of the vehicle during

entry. Ideally, the thermal protection system (TPS)
should be reusable and have low mass, long life, and

sufficient strength and stiffness to support aerody-

namic and thermal loads. Also, tile TPS must be

able to (1) withstand handling during installation, in-
spection, and removal, (2) endure less-than-excellent

weather conditions during flight, and (3) remain op-

erational after sustaining partial damage.

Three general reusable TPS classes have bccn de-
veloped over the past years: metallic (for tempera-

tures less than about 2300°F, refs. 1 and 2), ceramic

(for temperatures less than about 2700°F, ref. 3),

and high-temperature composite (for temperatures

greater than about 2700°F, ref. 4). Three metal-
lie TPS concepts have bccn developed and tested

for potential application in the lower temperature

range: metallic stand-off TPS (ref. 1), multiwall TPS

(ref. 1), and superalloy honeycomb (SAHC) TPS

(ref. 5). Tile superalloy honeycomb TPS consists of

12- by 12-in. honeycomb-stiffened panels that encap-
sulate fiberous insulation. The panels are mechani-

cally attached to the exterior of the primary struc-

ture of the vehicle, where they form a reusable and

durable insulating layer. The panels are designed for
a maximum surface temperature of 2000°F, and de-

pending on the heating history of the design, they
can be several inches thick. This report describes

the fabrication and testing of a 2-panel array and a

20-panel array of the superalloy honeycomb TPS.

An array of two panels was subjected to radiant

heating tests at NASA Johnson Space Center (JSC).
The test conditions simulated entry temperature and

pressure histories for the Space Shuttle. The two-

panel array was also placed in an acoustic chamber

at JSC and subjected to an acoustic environment

representative of that which occurs near the aft end
of the Space Shuttle during liftoff. In addition, the

SAHC two-panel array was thermally analyzed with

the finite-element method. An array of 20 panels
was exposed to Math 6.75 flow conditions in the

Langley 8-Foot High-Temperature Tunnel (8_HTT).

Ttle aerothermal tests were performed to study panel

behavior in hypersonic flow conditions and to assess
the effects of convective heating, particularly in the

gaps between panels. Thermal and acoustic test data
for the two-panel array were contributed by Donald
J. Tillian and James D. Johnston of NASA Johnson

Space Center, Houston, Texas.

Superalloy Honeycomb TPS Design and

Fabrication

Design Requirements

The superalloy honeycomb TPS panels tested in

this program were sized to limit the temperature of

the primary aluminum structure of an entry vehi-
cle like the Space Shuttle to less than 350°F. Fig-

ure 1 illustrates the typical entry pressure and surface



temperatureconditionsforwhichthepanelswerede-
signed.Thepressureandtemperaturehistoriesrep-
resentconditionsat SpaceShuttlebody point 1300
during trajectory14414.1C(ref. 1). A typicalen-
try cyclelastsabout2000scc.Themaximumentry
temperatureof 1900°Foccursat about500secinto
tile trajectoryat apressureof 0.26psia.Tile surface
heatingis essentiallycompletedbeforethepressure
startsto riseat aboutI600see.

A typicalSAHCTPSpanel,shownin figure2(a),
wasdesignedto supportanascentpressureloadof
2psiandto withstandtemperature-gradient-induced
thermalstressesassociatedwith the entry temper-
ature history. The panel consistsof inner and
outer layersof metallichoneycomb-coresandwich
with fibcrousinsulationcontainedbetweenthe two
layers. (Seeref. 5.) Beadedsideclosuresaround
the perimeterof the paneljoin the two layersof
honeycomb-coresandwichandenclosetheinsulation
to formadiscretepanel.Theouterhoneycomb-core
sandwich,whichmustsurvivetemperaturesup to
2000°F,is madeof IncoAlloysInconel617.Thein-
nerhoneycomb-coresandwich,whichdoesnotgetas
hot, is madeof lighterweighttitanium alloy. Simi-
larly,theouterlayerof fiberousinsulation,Manville
Ceraehrome,isa high-temperatureinsulation(maxi-
mumtemperatureof2600°F)andisrelativelyheavy
(6 lb/ft 3 density). The inner layer,ManvilleQ-
Fiber felt, is a lowertemperatureinsulation(max-
imumtemperatureof 1800°F)and is lighterweight
(3.5lb/ft 3density)than theouterlayer.Overhang-
ing lips on two edgesof the panelinhibit flowof
hot gasesbetweenpanels. Underhanginglips on
tile other two edgesprotect the materialbeneath
thepanelsfrom directradiationheating.Fourme-
chanicalattachments,whicharesubsequentlyde-
scribedin detail,areprovidedto securethe panel
to theprimarystructureof thevehicle.A venthole
with a 0.31-in.diameterwaslocatedin the inner
honeycomb-coresandwichof eachpanelto equalize
pressuredifferentialsbetweenthepanelinteriorand
exterior.TheVentholewascoveredwitha400-mesh
screento preventthe entranceof liquid waterinto
thepanel.

Panel Fabrication

Eachpanelwasfabricatedin a three-steppro-
ccss. In the first fabricationstep, an Inconel617
outerhoneycomb-coresandwichanda beadedside-
closureassemblywerediffusionbrazed. The 0.25-
in-widesquare-cellhoneycombcorewas fabricated
from 0.002-in-thickcorrugatedfoil. The tlfickness
of the facesheetswas0.005in., andthe depthof
the corewas0.28in. The four sideclosureswere

beadedbyusingaformingtool to presscorrugations
andflangesinto0.003-in-thickInconel617foil sheets
thatwerethentrimmedto theirfinalsize.A brazeal-
loy (1.97B-0.02C-13.13Cr-3.4Fe-Nibalance)wasap-
pliedto onesideof eachfacesheetandto onesideof
a flangeoneachsideclosure.Thehoneycombcore
wasplacedbetweenthe facesheets,andthebeaded
sideclosureswereresistancespotweldedto the face
sheets.Theassemblywasplacedona flat reference
surfacein a vacuumfurnace,andtungstenpellets
wereplacedon theassemblyto providecontactpres-
surefor the diffusionbrazingprocess.Thefurnace
wasevacuatedto 10.4 torr andheatedto 2150°F.
Theassemblywasheldat this temperaturefor3min,
cooledto 1900°F,andthenheldat this temperature
for 1hr.

In the secondfabrication step, the inner
honeycomb-coresandwichwasfabricatedfrom0.006-
in-thickfacesheets(Ti-6A1-4V)anda 0.170-in-deep
core(Ti-3A1-2.5V).The 0.1875-in-widesquare-cell
honeycombcorewasmanufacturedfrom 0.002-in-
thick corrugatedfoil. Flangeson two sidesof the
Ti-6A1-4Vfacesheetswereshapedwith form tools
duringa superplasticforming(SPF)process.After
beingcleaned,theedgesof thehoneycombcorewere
platedwithaLiquid Interface Diffusion (LID) 1 bond-

ing material. The core and face sheets were placed to-
gether, inserted into a vacuum furnace, and heated to
1725°F to diffusion bond the core to the face sheets.

In the third fabrication step, the Inconel 617 as-

sembly and the titanium assembly were joined to-

gether. The flanges of the assemblies were plated
with the LID bonding alloy. The Inconel 617

honeycomb and beaded side-closure assembly was
filled with a 0.5-in-thick layer of Cerachromc insula-

tion and a 1.39-in-thick layer of Q-Fiber felt insula-

tion. The titanium honeycomb assembly was placed

over the Q-Fiber felt insulation, and the flanges of
both assemblies were resistance spot welded together

to form a panel. The panel was again placed on a flat
reference surface in a vacuum furnace at 10 -5 torr

and heated to 1725°F. The flanges of the two as-
semblies were thus LID bonded together to form a

completed panel. Reference 6 provides a more de-
tailed description of this fabrication procedure. Fig-

ure 2(b) shows a fully assembled panel, with overall

dimensions of 12 by 12 by 2.35 in.

Panel Attachment

Two mechanical attachment concepts were devel-

oped: a bayonet-clip attachment concept (ref. 1) and

a through-panel fastener assembly concept (ref. 5).

1 Proprietary joining process for Rohr Industries, Inc.
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Both attachment concepts were designed to allow

easy installation and removal of panels, tolerance for
minor misalignment of panels, and accommodation

of thermal expansion and deflection of panels.

The bayonet-clip attachment concept, illustrated

in figure 3(a), consists of three parts: a vehicle clip

a Ti-6AI-4V panel clip, and a Ti-6AI-4V bayonet.

Two bayonets are LID bonded to the underside of
the front of a panel, and two panel clips are LID
bonded to the underside of the rear of a panel.

Vehicle clips are attached to the vehicle structure

at locations matching the TPS panel layout. The

bayonet-clip attachment concept requires that panels
be installed in rows. The front of the first panel is

anchored by inserting its bayonets into the vehicle

clips. The bayonets of a panel immediately behind

the first panel are inserted through tile vehicle clips

and then through the panel clips of the first panel.

Successive panels are installed in the same manner
until a row is completed. Then, the last panel in a

row is fastened to the vehicle structure by another

attachment concept (i.e., a pair of through-panel

fasteners). To remove a panel or a row of panels,

this process is reversed.

Figure 3(b) illustrates the through-panel fastener
assembly concept. Four Inconel 617 through-panel

fastener assemblies, which are diffusion brazed to the

Inconel 617 honeycomb layer, are LID bonded to the

titanium honeycomb layer during the last step of the

panel fabrication process. Shoulder bolts, inserted at
each corner of the panel, are used to attach a panel
to the vehicle structure. Three of the four holes in

the titanium honeycomb (TiHC) layer are oversized

to allow lateral movement (due to thermal growth)

of the panel. Removal of an individual panel requires
the removal of shoulder bolts from the panel and from

adjacent panels. The panel is moved laterally and

lifted away from the vehicle structure, so that the

underhanging lips clear the undersides of surrounding

panels. Thus, the use of through-panel fasteners
allows the removal of individual panels with minimal

disturbance of adjacent panels.

Two-Panel Array Assembly

A two-panel array was assembled and instru-

mented for cyclic radiant heating tests. As shown

in figure 4, the array consisted of two panels that

were mechanically fastened to an aluminum plate
with bayonet-clip attachments. A nominal gap spac-

ing of 0.220 in. between the two panels was used

to accommodate thermal expansion. The aluminum

plate was sized to represent the thermal mass of
the vehicle structure of the Space Shuttle at a lo-

cation where the maximum design surface tempera-

ture is 1900°F. Strips of Du Pont Nomex felt used

to cushion the panels were bonded to the 0.190-

in-thick aluminum plate with an elastomeric Gen-

eral Electric RTV (room temperature vulcanizing)
silicone adhesive. The felt strips, made of a mat

of randomly oriented horizontal Nomex fibers, were

1.0 in. wide by 0.190 in. thick (ref. 7). The strips
were laid in a square pattern not only to cush-

ion the edges of each panel but also to minimize

air flow beneath each panel. A single gap width

of 0.125 in. in the felt pattern under each panel
was used to vent the underside of a panel to the

atmosphere.

Each of the two panels in the array is about 12 in.

wide by 12 in. long by 2.35 in. thick. A diagram of the

array (fig. 5) identifies the locations of 26 Chromel-

Alumel (type K) thermocouples used to sense panel

and aluminum plate temperatures during testing.
Five thermocouples were peened to the aluminum

plate, nine thermocouples were tack welded to the

underside of the panels, three thermocouples were

tack welded to panel 1 on the exterior of the side

closure in the gap region, and nine thermocouples
were tack welded to the upper surfaces of the panels.

All thermoeouple wires were No. 30 AWG (American

Wire Gauge) and were fiberglass sheathed except for

the upper surface wires, which were metal sheathed.

After the array was assembled and instrumented,

a noncatalytic ceramic coating was applied to the

upper surface of the array and allowed to air dry.

The 0.0015- to 0.002-in-thick coating is a commer-

cially available, water-based, silica-alumina propri-

etary coating designated CRC-SBE, which is pro-
duced by the Ceramic-Refractory Corporation. It

has good adhesion to the Inconel 617 foil sheets, an
emittance of 0.65, and the capability of withstanding

temperatures greater than 1800°F (ref. 8). The ce-
ramic coating was applied to the surface of the panels

with conventional spray painting equipment and air

dried at room temperature. The panels were coated
to evaluate the adherence of a nonmetallic, noncat-

alytic coating to an SAHC TPS panel surface. Such

a coating is of interest because, for the same entry
conditions, a catalytic metallic surface is subjected to

a higher heat load than a noncatalytic surface. This
difference occurs because metallic surfaces are gener-

ally catalytic to the recombination of dissociated air
molecules, and the energy released during recombina-
tion adds to the heat load. Therefore, a noncatalytie

coating increases the thermal efficiency of a metal-

lic TPS by delaying recombination and thus lowering
the net heat flux absorbed by the panel. (See ref. 8.)



20-PanelArray Assembly

A 20-panelarraywasfabricatedandinstrumented
forradiantheatingandacrothermaltests.Thearray,
shownin figure6, wasconfiguredto fit a standard
panelholderusedin theLangley8PHTT.Twopanel
sizes,about12in.wideby 12in. longandabout6-in.
wideby 12in. long,wereusedto fill a 42.5-in-wide
by 60-in-longopeningill thepanelholder.A 0.190-
in-thickaluminumplate,representingthevehiclepri-
marystructure,supportedtim panelssuchthat the
surfacesof thepanelswereflushwittl thesurfaceof
thepanelholder.Theedgesof the ahlmimnnplate
weresealedto thepanelholderwithRTVsiliconead-
hesive.A nominalgapspacingof 0.220in.wasused
betweensideclosuresof adjacentpanels.Panels2A,
2B,2E,andall panelsof row3 (seefig. 6) werefas-
tenedwith bayonet-clipattachments;panels1Cand
1Dwerefastenedwith through-panelfasteners.The
remainingpanelswerefastenedwithacombinationof
bayonet-clipattachmentsandthrough-panelfasten-
ers. As with the two-panel array, the panels were

cushioned on 1.0-in-wide by 0.190-in-thick Nomex

felt strips. The felt strips, which were fitted around

the areas having bayonet-clip attachments, were
bonded to the aluminum support structure with RTV
adhesive.

Figure 7 shows the locations of thermocouple
and pressure instrumentation for the 20-panel array.

Fifty-five Chromel-Ahnnel (type K) thermocouples

were used to record panel and structure temperatures

during testing. The thermocouple mounting methods

and sheathing of the No. 30 AWG wire were similar to
those used on the two-panel array. For the 20-panel

array, 24 thermocouples were mounted on the upper
surface of the array, 9 were mounted on the external

surfaces of selected side closures (in the gaps between

panels), 3 were mounted on the internal surface of a

side closure (section D-D of fig. 7), 2 were mounted
at the center on the interior face sheets of a panel

(section E-E of fig. 7), 10 were mounted on the lower
surface of selected panels, and 7 were mounted on the

support structure (aluminum plate and frame). The
lead wires of the internally mounted thcrmocouples

exited through the bottom of the panel, while the
lead wires on the external surfaces of the side closures
were routed down the side closure and under the

panel. The lead wires of thermocouples mounted
on the upper surface of a panel were routed to

the trailing edge, down the side closure, and under

the panel. Eleven pressure probes were used to

monitor pressures beneath the panels and in the gaps

between panels. Seven probes, which penetrated

the aluminum plate, were located beneath selected
panels, and four probes were inserted from the edge

of the array into selected gaps. The probes located

in the gaps were used to monitor gap pressures

to determine whether significant pressure gradients

occurred during the aerothermal tests.

Ttle noncatalytic ceramic coating, CRC-SBE, was

applied to the upper surfaces of the panels along

rows 1 and 2 of the 20-panel array to evaluate its

adherence. (This coating was also used on the two-

panel array.) Also, a black coating, Pyromark 2500,
was applied to the upper surfaces of the panels along

rows 3 and 4. Pyromark is a commercially avail-

able, high-temperature, high-emittancc (0.85) paint,

which is manufactured by Big Three Industries.

Test Facilities and Procedures

Cyclic Radiant Heating Tests of

Two-Panel Array

The cyclic radiant heating tests were conducted

in a radiant heating test chamber at NASA Johnson

Space Center. The chamber, shown in figure 8, is

designed to simulate the thermal and static pressure
environments to which spacecraft thermal protection

systems are exposed during the ascent, orbit, and

entry phases of a mission.

The test chamber has a volume of 400 ft 3 and

can accommodate models up to 2 by 2 ft. A radiant

heater and a cryogenically cooled panel located inside
the test chamber are mounted on rails to allow either

one to be positioned over a test model during testing.

(The cryogenically cooled panel was not used during
these tests.) The heater consists of electrically heated

graphite elements enclosed in a nitrogen-purged fix-
ture box. One side of tile fixture box is a heated

niobium susceptor plate that reradiates thermal en-

ergy to the test model. A mechanical vacuum pump

is used to control static pressure conditions within
the chamber. Thus, a test model can be heated or

cooled while pressure conditions are maintained. For

the cyclic radiant heating tests, only the pressure and

radiant heater systems were used to simulate entry

conditions for the two-panel array.

Tile test model, shown in figure 9, contained

the two-panel array and its support structure. The

support structure consisted of an aluminum panel
holder and several types of insulation. The insulation

was located beneath and around the sides of the array

to minimize heat loss between the array and the panel

holder during testing.

Heater operating conditions, environmental test
conditions, and model temperature response data

were recorded by two data acquisition systems. The

first system is an analog-to-digital recording system



that digitizesanalogdataforallchannelsandrecords
the data on magnetictape. Tile secondsystem,
whichrecordsanddisplaysreal-timedatafrom the
first system,consistsof self-balancingpotentiometer
strip-chartrecordersthat alsoserveas a backup
systemfor theanalog-to-digitalsystem.

Thearraywassubjectedto anelevatedtemper-
aturecurecyclefor about4600seeto removethe
volatilecomponentsfromtheceramiccoating.The
first stepof the curecycleconsistedof heatingthe
surfaceof the panels,underambientpressure,from
roomtemperatureto 225°Foveraperiodof 1000sec
andholdingat this temperaturefor 900sec.Thesec-
ondstepconsistedof increasingthesurfacetemper-
atureto 350°Fovera periodof 300secandholding
at this temperaturefor 900see.Thethird stepcon-
sistedofincreasingthesurfacetemperatureto 500°F
overaperiodof 300seeandholdingat this tempera-
turefor900sec.Thefourthstepconsistedofturning
off theheatersat 4300seeandallowingthe surface
of thepanelsto air coolto ambienttemperature.

After thecurecycle,the arraywassubjectedto
26thermal-pressurecyclesin thetestchamber.A cy-
cleconsistedof evacuatingthechamberto 10-4 torr
and exposingthe arrayto the surfacetemperature
andstaticpressurehistoriesshownin figure1. The
detailsofthethermal-pressurecyclesaresummarized
in table I. The maximumsurfacetemperaturefor
cycles1 through25wasthe designtemperatureof
1900°F.Thesurfaceof the arraywasintentionally
exposedto anover-temperatureconditionof 2000°F
duringcycle26,andthearraywasexposedto acous-
tic testsbetweencycles 16 and 17.

Acoustic Tests of Two-Panel Array

The two-panel array was subjected to acoustic

tests in the Sonic Fatigue Laboratory (SFL) located

at Johnson Space Center. The SFL is used to expose

structural components to simulated rocket-launch-

induced and aerodynamically induced acoustic noise
environments. The primary test equipment consists

of a 16- by 20- by 40-ft reverberant test chamber

that can accommodate panels up to 15 by 20 ft. Test
sound levels to 166 dB (reference level: 2.9 × 10 -9

psia) can be imposed on a test article. Excitation is
normally provided by one 20-Hz, one 40-Hz, two 100-

Hz, and eight 250-Hz horns. The horns are driven

by appropriate low- or high-frequency air modula-

tors (noise generators). These noise generators op-
erate by chopping a compressed air stream provided

by a manifold. The manifold distributes the air from

three compressors that can be operated individually

or in combination toprovide a continuous total flow
of 54 000 standard fta/min (SCFM) at a pressure of

about 30 psig. As many as twenty 300 000-acoustic-

watt and eighteen 10000-acoustic-watt noise gcner-
ators arc available to drive the horns. The noise

generators are controllcd by 24 solid-state power am-

plifiers, each having an output capability of 4 kVA.

The acoustic test assembly was located on the
floor of the sound chamber and instrumented with

microphones and accelerometers. (See schematic

shown in fig. 10.) The two-panel array was placed on

a 0.25-in-thick foam pad, and the sides of the array
were shielded from the sound chamber environment

by a plastic sheet and a layer of putty. The sheet
was placed between the putty and the sides of the

panels to protect the panels from putty contamina-

tion. Four microphones were mounted oil the floor

of the chamber, each located about 6 in. from a cor-

ner of the array. Two accelerometers, each with a

mass of 1.919 x 10 .4 slugs (2.8 g), were mounted on

the surface of panel 1. (See fig. 10.) Accelerometer
A1 was located 2 in. from a corner of the panel, and
aceelerometcr A2 was located at the center of the

panel.

After being exposed to the 16 thermal cycles de-

scribed in table I, the array was exposed to the acous-

tic spectrum (fig. 11) that corresponds to an overall

sound pressure level of 161 dB. The spectrum is rep-
resentative of the sound environment near the aft end

of the Space Shuttle during launch. The array was

cxposcd to the acoustic spectrum for 15 rain. Based

on the assumption that the most severe acoustical ex-

posure occurs during the first 8 sec. of launch (ref. 2),
this exposure approximates the cumulative acoustic
environment for 25 missions with a scatter factor of 4.

Aerothermal Tests of 20-Panel Array

The 20-panel array was exposed to thermal and

aerodynamic loads at hypersonic speeds in the Lang-

ley 8_HTT. The tunnel is a large blowdown facility

that can generate, for run times up to about 2 min,
a test stream that simulates conditions at a nomi-

nal Mach number of 7 at altitudes between 80 000

and 125000 ft. (Sec schenmtic shown in fig. 12.)

The high energy needed for this simulation is ob-

tained by burning a mixture of methane and air

under pressure in the combustor (fig. 12(a)) and ex-
panding the products of combustion through a coni-

cally contoured nozzle into an open-jet test chamber.

The flow enters a supersonic diffuser where an air

ejector pumps the flow through a mixing tube and
exhausts the flow through a subsonic diffuser into

the atmosphere. This tunnel operates at combustor

total temperatures between 2060°F and 3140°F, at

free-stream dynamic pressures from 2.0 to 12.5 psia,



andat free-streamunit Reynoldsnumbersper foot
from3.0x 105to 3.0x 106.

A radiantheatingsystem,locatedbeneaththe
test chamber,wasusedto preheatthe arraybefore
its insertioninto the hypersonictest streamand
to protect the array from adversetunnelstart-up
transientsand acousticloads. The heatersystem
consistedof quartz-lampradiatorspoweredby an
Ignitron powersupplyand controlledby a closed-
loopservosystem.References9and10containmore
detailedinformationaboutthe8_HTT.

The test modelconsistedof the 20-panelarray.
installedin a panelholderthat wasattachedto a
hydraulicallyactuatedelevatorloea{edbeneaththe
test chamberof the 8_HTT.Beforetmmelstart-up,
thetestmodelwaspositionedinapodbelowthetest
chamberandwascoveredwithquartz-lampradiators
(fig. 12(b)).After themodelwaspreheatedandthe
desiredflowconditionswereestablished,theradiant
heaterswereretractedandthemodelwasrapidlyin-
sertedinto the hypersonictest stream(fig. 12(c)).
A pitch systemlocatedon the elevatorpositioned
the modelat an angleof attack of 16° duringthe
insertionprocess.Thesecombinedpreheatingand
aerothermaltestsrequiredclosecoordinationof the
two test modes.Whenoperationalproblemspre-
ventedthetunnelfromstarting,thetestwasaborted
anda radiantpreheatingtestwasperformed.

Table__I siimmarizesthe details of the coat-
ing cure, radiantheating,radiantpreheating,and
acrothermaltestconditions.The2high-temperature
coatingsappliedto the surfaceof the 20-panelar-
ray werecuredwith a proceduresimilarto theone
usedto curethecoatingon the 2-panelarray.The
cureprocesswasdividedintofourseparatecyclesto
avoidoverheatingthe testmodel;threecycleswere
usedto curetheceramiccoating,andonecyclewas
usedto curethe blackcoating.Test3 consistedof
heatingthesurfaceof thepanelsfromambienttem-
peratureto 225°Fovera periodof 1000see,holding
at this temperaturefor 1000see,andthen turning
theheatersoff andallowingthearrayto cool.Test4
consistedofheatingthepanelsfromambienttemper-
atureto 480°Fovera periodof 2500secandturn-
ing off the heatersandallowingthe array to cool.
Test5 consistedof heatingthe surfaceof the array
fromambienttemperatureto 480°F,holdingat this
temperaturefor2000see,andturningtheheatersoff
andallowingthe arrayto cooI. Test6 wasusedto
curetheblackcoating.Thistestconsistedof heating
tile surfaceof thearrayfromambienttemperatureto
480°Fovera periodof 1000seeandholdingat this
temperaturefor 1500sec,increasingthesurfacetem-

peratureto 1000°Fandholdingfor 100sec,andthen
turningtheheatersoffandallowingthearray,to cool.

A radiantheatingtestconsistedof exposingthe
surfaceof the array to the sametemperaturepro-
file usedin the radiantheatingtestsfor the two-
panelarraybut at atmosphericpressure.Threera-
diant heatingtests (tests7 9) wereconductedto
checktheheateroperationandto determinethat the
heaterand modelcouldwithstand200secat may
imumpaneltemperature(the time periodallotted
forthestart-upof the8'HTT beforeanaerothermal
test). Theradiantpreheatingtests(tests10,11,18,
and19)wereradiantheatingteststhat resultedbe-
causescheduledaerothermaltestswereaborted.

An aerothermaltestwasinitiatedwith aradiant.
preheatingof tile modelsurfaceto a specifiedmax-
imumsurfacetemperature.Thetunnelwasstarted,
the lampswereturnedoff and retracted,and the
modelwasrotatedto a desiredangleof attackand
insertedinto thehypersonicflowstream.Themodel
washeld in the flowstreamfor up to 20see,after
which it wasretractedinto the pod. The tunnel
flowwasthenstoppedandthemodelwasallowedto
coolbynaturalconvection.Thus,thetotal testtime
wastypically2000see,eventhoughatunnelrunwas
completedwithin thefirst500see.Thearraywasex-
posedto fouraerothermaltests(tests 13 15 and 20).

Figure 13 shows a typical temperature history of an
aerotherm M test.

During radiant heating tests and preheating be-

fore aerothermal exposure, thermocouple output sig-

nals were recorded at 2-see intervals. During the
aerothermal portion of the tests, pressure and tem-

perature data were recorded at 20 samples/see.
Free-stream conditions in the test chamber were de-
termined from reference measurements of the com-

bustion chamber and from results of tunnel-stream

survey tests such as those reported in reference 10.
Table III summarizes the details of the wind tunnel
test conditions for the aerothermal tests.

Figure 14 shows the 20-panel array and panel

holder installed in the 8tHTT. A 1.0-in-thick layer of
rigid Glasrock ceramic insulation, which surrounded

tile array, was used to thermally protect the panel

holder. A sharp leading edge with a lateral row of

0.190-in-diameter spherical boundary-layer trips was

used to promote a uniform turbulent boundary layer
(refl i0). The panels were installed in the panel

holder so that two of their edges were parallel to
the flow direction. This installation was considered

a worst-case orientation for the panels with respect
to the flow. Fences attached to each side of the

panel holder were used to provide a relatively uniform



two-dimensionalflowoverthe surfaceof the panel
holder. Thelight-coloredcoatingon thepanelson
the right in figure14 is the ceramic,noncatalytic
coating,andthedark-colored(black)coatingon the
panelson the left is the high-temperature,high-
emittancepaint.

Thermal Analysis

Thethermalresponseof theSAHCtwo-panelar-
raywaspredictedwithafinite-elementcomputerpro-
gramcalledthe SPARThermalAnalyzer(ref. 11).
The SPAR programcan be appliedto steady-
state and transientthermal-analysisproblemsin-
volvingconduction,convection,radiation,andmass
transport.

Finite-Element Thermal Model

Thefinite-elementthermalmodelshownin fig-
ure 15representsa sectionof the arrayextending
from thecenterof panel1 to thecenterof panel2.

The Inconel 617 honeycomb sandwich, Cerachrome

insulation, Q-Fiber felt insulation, titanium honey-

comb sandwich, Nomex felt, air, and aluminum were

represented by three-dimensional (3-D) hexahedral

conduction elements. Elements representing air were
located between the side closures in the gap region

and between the underside of each panel and the

aluminum plate. Heat transfer through the air was

by conduction. The Inconel 617 metal side closure,

overhanging lip, and underhanging lip were repre-

sented by two-dimensional (2-D) quadrilateral radi-
ation elements superimposed on 2-D quadrilateral

conduction elements. The gap region, treated as

an enclosure for radiation analysis purposes, also

contained 2-D quadrilateral radiation elements on
the front and back openings of the gap. Although

three-dimensional elements were used throughout the

model, the analysis was considered to be a two-
dimensional analysis because heat transfer occurred

only in the X-Y plane. Adiabatic wall boundary con-

ditions were applied to the four sides and the bot-

tom surface of the model. Measured surface temper-

ature data from the radiant heating tests (cycle 5)
of the two-panel array were used as input data for

a time-dependent, temperature boundary condition

that was uniformly applied to the top surface of the

model. Conduction and radiation were the primary

modes of heat transfer considered; convective heat

transfer was neglected in the analysis.

The model, consisting of 1146 nodes and 585 ele-
ments, represented a region 2.68 in. high, 12 in. long,

and 0.10 in. thick. The spacing between the panels

was 0.040 in. wide at the top of the gap and 0.232 in.

wide at the bottom of the gap. These dimensions ac-

count for upper and lower face sheet expansions due
to their respective increases in temperature at the

time of maximum surface heating. Even though the

gap dimensions on the actual array changed through-
out the thermal cycle because of thermal deforma-

tions, this fixed-gap geometry was used throughout

the analysis. Also, a gap width dimension of 0.240 in.

at room temperature was used (for analytical pur-

poses only) as the reference spacing between adjacent

panels.

ThermophysicaI Properties

Figure 15 shows materials rcpresented in the
finite-element model, and tables IV and V list the

thermophysical properties used in the analysis. The

thermophysical properties of all the materials are

functions of temperature; the properties of the Cer-

aehrome fiberous insulation and the Q-Fiber felt
fiberous insulation are functions of temperature and

pressure. Static pressure was input to the analysis

as a function of time. Values of thermal conductivity

were obtained as follows: Inconel 617 metal (ref. 12),

titanium (ref. 13), air (ref. 14), and Nomex and alu-

minum (ref. 15). Inconel 617 honeycomb sandwich,

titanium honeycomb sandwich, Cerachrome insula-
tion, and Q-Fiber felt insulation were treated as ma-

terials having an effective thermal conductivity. Ef-

fective thermal conductivity, sometimes referred to

as apparent conductivity or as an overall coefficient

of heat transfer (ref. 16), combines the effects of

heat transfer by conduction, convection, and radi-
ation into a single conduction term.

Orthotropic values of effective thermal conduc-
tivity were required because differences in values of

conductivity exist within the insulation because of

fiber direction and within the honeycomb core be-
cause of core orientation. Values of conductivity in

the through-the-thickness (y-) direction for the insu-

lation materials and the honeycomb-core sandwiches
were obtained from reference 5. Based on recommen-

dations from the manufacturer, values of conductiv-

ity in the in-plane (X-Z plane) direction for the in-
sulation materials were 35-percent higher in the fiber

direction (in-plane direction) than in the through-
the-thickness direction. The in-plane values for each

honeycomb sandwich were calculated by dividing the

cross-sectional area of the metal by the total cross-

sectional area and then multiplying this ratio by the

value of conductivity for the appropriate metal. The

conductivity of air within the cells is an order of mag-

nitude less than the conductivity of either metal and

was therefore neglected.



Figures16(a)and 16(b)showtheeffectivether-
mal conductivitiesof Q-Fiberfelt insulationandof
Cerachromc insulation at atmospheric pressure as
functions of temperature. The solid and dashed

curves shown in figure 16(a) are the upper and lower
boundaries of data taken from references 5 and 17

to 19. Tile data used to generate the curves in fig-
ure 16(b) were obtained from references 5, 17, and

20. The data for Q-Fiber felt insulation (fig. 16(a))

show little scatter throughout the temperature range;
however, significant scatter exists within tile data

for Cerachrome insulation (fig. 16(b)), especially at

the higher temperatures. An 87-percent difference in

conductivity exists between the lower boundary and
upper boundary at 2000°F. The values at tile lower

boundary shown in the figures, which were taken

from reference 5, were used as input in the finite-

clement thermal analysis. Table 1Xr is a listing of the

data for the lower boundary presented as a function
of temperature amt pressure.

The thermophysical properties assigned to the ra-
diation elements were emissivity, reflcctivity, and ab-

sorptivity. These properties, which are listed in ta-
ble V, were held constant in temperature. Elements

with an emissivity of 1.0 (blackbody elements) were

used to close the fi'ont and back openings of the
gap. These elements simulated radiation exchange

between the gap and the portions of the gap outside
the plane of the model.

Results and Discussion

Thermal Performance of Two-Panel Array

The two-panel array was subjected to 26 entry

thermal-pressure cycles with the temperature and

pressure histories shown in figure 1. The first four
cycles, which were used to develop consistent op-

erating procedures, yielded test data that showed

variations in Cycle-to-cycle maximum surface temper-
atures. Consistent panel surface temperature distri-

butions and consistent maximum surface tempera-

tures Occurred from cycle 5 t0 Cycle 25. Figure 17

shows a surface temperature distribution (cycle 5 at

t = 620 scc) that is representative of cycles 5 through

25. The isotherms in the figure were estimated by lin-
early interpolating temperatures obtained from the

nine surface thermocouples mounted on tile array.
A nearly uniform temperature distribution existed

over the outer surface near the center of the array;
however, temperatures near the corners were about

200°F lower than temperatures at the center because

of edge effects. - ....

As expected, the temperature distribution

through the thickness at the center of a paneI dif-

Drs from the temperature distribution through the

thickness at the edge of a panel. The differences oc-

cur because the conduction path through the thick-

ness at the center of a panel is predominantly through

the insulation, which has low thermal conductivity.
The conduction path at the edge of a panel is pre-
dominantly through the thin metal foil of the side

closure, which has high thermal conductivity. Radi-
ation heating in the gap region also contributes to

the heat transfer at the edge of a panel. Figure 18(a)
shows the temperature histories measured at the cen-

ter of panel 1 for cycles 5 and 25. The temperatures
were measured on the upper and lower surfaces of the

panel (locations A and B) and on the aluminum plate

directly beneath the panel center (location C). Fig-
ure 18(b) shows similar temperature histories mea-

sured at five locations in the gap region. The pair of

curves labeled D represents tile temperature history

of the surface of the panel; likewise, tile remaining
four pairs of curves represent the temperature histo-

ries at locations E, F, G, and H.

The maximum temperature on the bottom of

panel 1 near the edge (fig. 18(b), location G)
was about 100°F higher than that at the center

(fig. 18(a), location B). However, the temperature

difference between locations B and G was not large

enough to locally affect the temperature response of

the aluminum plate because of the relatively high

thermal conductivity of aluminum. The similarity
of results from cycle 5 and cycle 25 illustrates the

consistency of the tests and indicates that no degra-

dation occurred in the thermal performance of the
panel.

Results from tile finite-element thermal analysis

are compared, in fig. 19(a), with temperatures mea-
sured during cycle 5 at the center of panel 1. The

peak temperature on the surface of the array (loca-
tion A) occurred at about 500 sec, and tile peak tem-

perature on tile underside of the panel (location B)

occurred at about 1200 sec. The calculated temper-
atures on the underside of the panel underpredicted

tim measured temperatures by as much as 80°F dur-

ing the period of high transient heating from 500 sec

to 1500 see. Throughout the entire entry period, the
calculated and measured temperatures of location C

on the aluminum plate agreed within 10°F.

Figure 19(b) shows the calculated and measured

temperatures in the gap region for cycle 5. The cal-

culated temperatures underprcdictcd the measured

temperatures during the period from 500 to 1500 sec,
except at location E, where the maximum measured

temperature was ovcrpredicted by about 50°F. Max-

imum temperatures at locations F, G, and H were

undcrprcdicted by 150°F, 250°F, and 75°F, respec-

tively. Throughout the entry period, the calculated



and measured temperatures at location I on the alu-

minum plate agreed within 20°F. During all 26 entry

cycles, the TPS panels repeatedly limited tile maxi-

nmm temperature of the aluminum structure to well

below the design limit of 350°F.

Although the reason for ttle differences between

calculated and measured temperatures during tran-
sient heating is not known, the use of standard

thermal material properties may have caused tile

differences. These properties are determined from

measurements taken during steady-state conditions

(refs. 19 and 20) and may not be adequate for the pr_

diction of temperatures under highly transient con-

ditions. Nevertheless, the relatively accurate predic-

tion of the panel, gap region, and aluminum plate

temperatures after 1500 sec (less transient condition)
indicates that the overall thermal performance of the

TPS panels can be predicted.

Parametric Study

The effects of varying several parameters were

studied to determine whether discrepancies between

predicted and measured gap temperatures resulted

from inadequate analytical modeling of the two-panel

array. Ttle effects of changes in the finite-element
mesh pattern, tile values of thermal conductivity, the

values for emissivity of the radiation elements facing

into the gap, the method of calculating view factors,

and the gap geometry were examined. Finally, the

placement of thermocouples and thermocouple lead
wires in the gap region was examined to determine

how temperature measurements are affected.

A 280-degree-of-freedom model of the gap region,

which contained the same element mesh pattern as

that used to represent the gap region on the larger

1146-degree-of-freedom model, was incrementally re-
fined to 700 degrees of freedom. An increase in max-

imum temperature at tile bottom of the gap of less
than 20°F resulted from the mesh refinement; thus,

this small increase indicates that the initial mesh pat-

tern was adequate.

As previously noted, values of effective thermal

conductivity for Cerachrome and Q-Fiber felt insula-

tion, defined by the lower boundaries in figures 16(a)

and 16(b), were used as input in the analysis. Be-
cause a wide range of scatter existed in the conduc-

tivity data for Ccrachrome insulation, the analysis

was repeated with values of effective thermal conduc-

tivity defined by the upper boundary in the figures.

Because of the increased conductivity, better agree-
ment between calculated and measured temperatures

was expected. However, the maximum temperatures

in the gap region at locations E, F, and G (fig. 19(b))

increased less than 20°F. Thus, the thermal conduc-

tivity of the insulation does not appear to be a dom-

inant parameter governing gap region temperatures.

Changes in values of emissivity and view factors
for the radiation elements were investigated to deter-

mine their effects on gap region temperatures. Values
of emissivity wcrc arbitrarily increased from 0.6 (with

a reflectivity of 0.4) to an emissivity of 1.0 (with a rc-

flectivity of 0.0). Calculated gap region temperatures

changed less than 20°F as a result of ttle use of these

two extreme values of emissivity; thus, the predicted

temperatures were relatively insensitive to changes

in emissivity. As described previously, view factors
were calculated by a procedure that treated tile gap

region as an enclosure. To verify that the radiation
energy distribution within the gap region was accu-

rate, temperatures were calculated by a second pro-
cedure that used a set of view factors determined by

the cross-string method (ref. 15). The temperatures
calculated by the two procedures were essentially

the same. Thus, the radiation energy distribution

within the gap region was consistent between the two
methods.

In addition to calculating view factors, different

gap width dimensions were examined to determine

how the distance between the panels affects side-

closure temperatures. As previously noted, spacings

of 0.040 in. at the top of tile gap and 0.232 in. at

the bottom of the gap were used throughout each
transient analysis. The gap width was art/itrarily in-

creased by 0.100 in. The enlarged gap dimension of

0.140 in. at the top and 0.332 in. at the bottom of

the gap was considered extreme. Nevertheless, the

calculated temperatures at tim lower portion of the
side closure increased by about 100°F. This temper-

ature increase was significant but not sufficient by

itself to attain good agreement between calculated

and measured temperatures. Thus, it appears that
uncertainties in the gap region geometry do not solely

account for the discrepancies between predicted and

measured gap temperatures.

Another potential source of error, the measure-

mcnt of the gap region temperatures, may have been

affected by the existence of tile thermocouples and
thermocouple lead wires attached to the exterior sur-

face of the side closure in the gap region. The ther-

mocouples and thermocouple lead wires may have
interfered with the radiation heat. transfer charac-

teristics in the gap region and caused temperatures

sensed at the thermocouple junctions to be too high.
Evidence to support this hypothesis is addressed in

a subsequent section. Consequently, the discrepan-

cies between predicted and measured panel and gap

region temperatures may have been due not only to
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deficienciesin the analysisbut alsoto temperature
measurementerrors.

Structural and Acoustic Performanceof
Two-PanelArray
The two-panelarrayis shownin figure20. As

previouslydiscussed,the arraywassubjectedto a
coatingcurecycle,radiantheatingcycles,andacous-
tic tests.Beforethecoatingcurecycle, the surface

of the array had developed a whitish discoloration.

(See fig. 20.) This discoloration resulted from water
absorption that occurred during the period between

application of the coating and the curing cycle. The

whitish discoloration, however, disappeared after ex-

posure to the first radiant heating cycle.

Exposure of the 2-panel array to 26 thermal-
pressure cycles caused intracell buckling of the outer

Inconel 617 face sheets and buckling of the overhang-

ing lip. (See fig. 21.) The buckles did not impair the
thermal or structural performance of the panels. The

intracell buckling of the face sheets initially occurred

only on some cells during the fabrication of the indi-

vidual panels. During the 26 thermal-pressure cycles,
the intracell buckling pattern gradually changed to a

nearly uniform convex pattern. The height of the

dimples was about 0.004 to 0.006 in. above the sur-
face of tile panel. The overhanging lip on panel 1,

which projected over the edge of panel 2, buckled

into a wavy pattern as a result of being constrained

from thermal expansion by the cooler side closure.
The buckled section of the lip was 4.5 in. long and

was located midway along the lip. The amplitude

of the buckle pattern was about 0.05 in. from crest

to valley, and the wavelength was about 1.5 in. from
crest to crest. Such surface roughness is not expected

to have an effect on the thermal performance of the

TPS because it is within the aerodynamic bound-

ary layer over most of the vehicle surface. Blistering
of the surface coating occurred during the first and

second thermal-pressure cycles, after which no addi-

tional blistcring was evident. Inadequate cleaning of
tile thin outer surfaces of tile array before application

of the noncatalytic coating is believed to be the cause
of the blistering. (Several test samples, adequately

cleaned before the coating process, were exposed to

80 thermal shock cycles from room temperature to
2000°F without blistering, ref. 8.)

The two-panel array was subjected to acoustic

tests between thermal-pressure cycles 16 and 17.

However, before the acoustic testing was started, the

overhanging lip along the right half of the edge of

panel 2 was unintentionally bent down, which caused
some local buckling to occur along the bottom edge

of the side closure. More importantly, the outer edge
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of the felt that supported the underside of this side

closure was inadvertently installed incorrectly during

the initial assembly. The edge of the felt, which by

design was to be positioned 0.25 in. beyond the edge

of the panel, was positioned 0.125 in. inward from the

edge of the panel. At the conclusion of the acoustic
tests, several cracks greater than 0.125 in. long were

observed along the bottom edge of the incorrectly

supported side closure. Figure 22 shows an edge

view of the acoustic damage on panel 2. Because no
damage occurred on the other seven sides of the two

panels that were properly supported by the Nomex

felt, the damage shown in figure 22 is attributed to

incorrect placement of the Nomex felt and to the

handling damage that occurred before the acoustic
tests.

The condition of the fiberous insulation contained

inside panel 2 was examined after all radiant heating

cycles and acoustic tests were completed. Figure 23

shows four layers of insulation: the top layer is Cer-
achrome insulation, and the three remaining layers

are Q-Fiber felt insulation. Both insulation materi-

als appear unchanged from pretest conditions. No

settling of either insulation material was observed.
Although a definitive assessment of the life of the

TPS panels would require further tests, including
combined thermal-acoustic tests, overall results from

these thermal and acoustic tests show that the pan-
els can endure realistic thermal and acoustic environ-
ments and maintain their effectiveness.

Aerothermal Performance of 20-Panel

Array

As previously discussed, the 20-panel array was
subjected to 20 tests in the 8'HTT to study panel

behavior in hypersonic flow conditions and to assess

the effects of convective heating, particularly in the

gaps between panels. Tables II and III describe the

nature of the tests, which included coating cure,

radiant heating cycles, and aerothermal exposure.
Temperatures were measured on the surface of the

panels, beneath the panels, and between the panels.
The thermal performance for the 20-panel array is

not directly comparable with that for the 2-panel

array because of the effects of the higher thermal

mass of the panel holder and because the aerothermal

preheating and radiant heating cycles occurred under
atmospheric pressure, which caused a reduction in

thermal efficiency of the fiberous insulation within

the panels.

Figures 24(a) and 24(b) show typical tempera-

ture histories for two radiant heating cycles (tests 7

and 8). The temperature data were obtained at
or near sections A-A, B-B, C-C, and D-D. (See



fig. 7.) All temperaturesshownweremeasuredin
thegapsbetweenpanelsexceptthesurfacetemper-
atures,whichweremeasuredabout6 in. from the
correspondingsectionlocation.All gapthermocou-
plesandthermocoupleleadwiresweremountedex-
ternally (solid lines in fig. 24) to the panelside
closuresexceptthoseat sectionD-D, whichwere
mountedinternally(dashedlinesin fig. 24). Tem-
peraturesat thetop of eachgapwerenot available
becausethermocouplesmountedat the top of the
gapsweredamagedinprevioustests.

Temperaturessensedby externally mounted
thermocouplcswere,in general,higherthan tem-
peraturessensedby internallymountedthermocou-
ples. Althoughthe externallymountedthermocou-
pleswerenot locatedat the samepositionon the
arrayastheinternallymountedthermocouples(sec-
tion D-D), the surfacetemperaturesmeasuredat
sectionD-D wereequalto or higherthan thoseat
sectionA-A. A comparisonof temperaturesat sec-
tionsD-DandA-Ain test7andtest8(fig.24)shows
that externallymountedthermocouplesatthemiddle
andat thebottomof thegapsensehighertemper-
aturesandsensetemperaturechangesmorerapidly
thaninternallymountedthermocouples.Thesecom-
parisonsindicatethat theexternallymountedther-
mocouplesandthermocoupleleadwires,asa result
of beingin a moreexposedlocation,weresensitive
to radiationheattransfer. Additionally,theexter-
nally mountedthermocoupleleadwiresmayhave
preventedthegapsfromclosingwhenthepanelswere
heated.Theseheatingeffectsmayhavealsooccurred
duringthetestingofthetwo-panelarraybecausethe
two-panelarrayhadsimilarthermocoupleinstrumen-
tationandwassubjectedto similarradiantheating
conditions.

Figure25showsa typicaltemperaturehistoryfor
an aerothermaltest (test 13). The temperatures
shownweremeasuredat sectionE-E at the center
of panel2C. (Seefig. 7.) The inset showsthe
temperaturehistorywith an expandedtime scale
from30secbeforethetimelabeledmodel-in (when

the model was inserted into the tunnel flow) to the

time labeled model-out (when the model was removed

from the tunnel flow). Thermocouples 15 and 44
were located on the outer and inner face sheets of the

Inconel 617 honeycomb sandwich, thcrmocouples 45
and 30 were located on the inner and outer face

sheets of the titanium honeycomb sandwich, and

thermocouple 54 was located on the aluminum plate.

The surface of the array was preheated with the

radiant heat lamps to about 1900°F. During the time

required to retract the heaters and insert the model

into the hypersonic flow, the surface temperature of

the array decreased to about 1100 ° . (For example,
see thermocouple 15, fig. 25.) When the model was

inserted into the flow, the surface temperature of

the panel rapidly increased to about 1700°F because

of aerodynamic heating. The constant temperature
of thermocouple 30 (fig. 25) is representative of all
the thermocouples located on the underside of the

panels and indicates that forced convective heating
did not occur under the panels. After the model was

retracted from the flow, the array was allowed to cool.

One objective of the aerothermal tests was to
determine whether convective heating occurs in the

gaps between panels when the gaps are aligned with
the flow. Previous tests on an array of thinner metal-

lic panels with gaps skewed 30 ° to the flow (ref. 21)

revealed no gap heating. The SAHC panels were
installed in a worst-case orientation with the gaps

parallel to the flow. This orientation may cause hot

gas flow to occur in the gaps between panels. Fig-
ure 26 shows temperature histories measured during

tests 13, 14, 15, and 20 at the bottom of the gaps at

sections A-A, B-B, C-C, and D-D (thermocouples 37,

40, 43, and 48, respectively). The temperature his-
tories of thermocouples 37, 40, and 43 (solid lines

in fig. 26) show an increase of 400°F at the bot-
tom of the gaps when the array was inserted into

the hypersonic flow. This rapid rise in temperature
resulted from convective heating caused by hot gas

flow in the gaps that contained thermocouple lead
wires at the top and the middle of the gap. The

presence of the lead wires may have created a hot

gas flow path that caused or contributed to the con-
vective heating. However, for each of the four tests,

the temperatures sensed by ttle internally mounted

thermocouple (thcrmocouple 48, shown by dashed
lines in fig. 26) did not indicate a rapid tempera-

ture rise. Thus, even though forced convective heat-

ing occurred in the gaps, the one instrumented gap
area without thermocouple wires showed negligible

convective heating. Because the existence of thermo-

couple wires in the gaps between panels may have

contributed to the gap heating, a definitive conclu-
sion as to the severity of aerothermal heating in gaps

that arc parallel to the flow is not possible.

If convective heating in the gaps between pan-
els does occur when the direction of flow over the

surface of a vehicle is parallel to the orientation of

the gaps between panels, the TPS concept may re-
quire modification to eliminate or at least sharply

reduce such heating. One proposed modification con-
sists of a beaded Inconel 617 foil bag filled with

Cerachrome insulation placed between the side clo-

sures of adjacent panels so that it meshes with
the beads of the side closure. This compressible
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gap-filler design, which is described in reference 22, is
lightweight (0.38 lbm/ft2), is easily brazed to the side

closure, and does not interfere with the installation or

removal of the panels. Another proposed modifica-

tion described in reference 22 uses a short foil strip

attached at one corner of each panel to block the flow

in the gap. However, no such modifications wcrc in-
corporated or evaluated during these tests.

Before test 20, the surface of the array was inten-

tionally damaged in four places to obtain a qualita-
tive assessment of the effects of a hypersonic flow over

different types of surface irregularities that may ex-

ist. on a TPS panel. These surface irregularities were

holes of about 0.5 in. in diameter that represented

several types of damage. (See fig. 27.) hnpact dam-
age was simulated by grinding the outer face sheet

and core and by punching through the outer face

sheet and crushing the core. Lightning strike damage

(ref. 2) was simulated by burning through only the
outer face sheet by gas torch, and accidental loss of

an attachment plug was simulated by removing an

attachment plug.

Figure 28 shows the effects of aerodynamic heat-

ing on the intentionally damaged surface of the model

during test 20. The only lighting used to expose the

fihn of the photograph was that radiating from the
surface of the array. The surface temperature was

about 1850°F. Tile torch burn-through damage is the

bright hot spot on the right side of fgure 28. How-
ever, the other holes, which were similar in size but

deeper, are not apparent in the figure. These results

suggest, that the appearance of the hot spot was due
to the exposure of the honeycomb core to the hyper-
sonic stream.

Additional hot spots at four locations on the ar-

ray surface (fig. 28) were caused by corners of gap
covers (panel overhanging lips) bent up into the flow

stream. The corner of tile gap cover located near the

center of the array may have been pushed up into
tile flow stream as a result of differences in panel

corner rotations that resulted from a unique com-

bination of bayonet-clip attachments and through-

panel fasteners at the intersection of the four ad-

jacent panels (panels 1B, 1C, 2B, and 2C, shown

in fig. 6). The bent up gap covers along the trail-
ing edge of the array were probably caused by the

panels thermally deforming against rigid Glasrock

insulation that surrounded the array. The thermal
deflections of the heated panels resulted in pillow-

ing which caused slightly higher surface temperatures

and greater brightness to occur on the upstream side
and at the center rather than on the downstream

side of individual panels. For example, the maximum

temperatures at thermocouples 21 and 22 (fig. 7)

were 1760°F and 1850°F, respectively. The greater

brightness of the right-hand side of the array was

caused by the panels with the noncatalytic coating

having a lower emissivity, and thus a higher temper-
ature, than the panels with the high-emissivity black

surface coating. (Catalytic reactions were not a fac-

tor in these tests because the enthalpy of tile Langley

8tHTT is not high enough to cause dissociation.) The
hot spots identified as face sheet buckles were due to

local separation of the face sheet from the core; this

separation was caused by thermal shock when molten

glass contacted the panel surface. The molten glass

resulted during wind tunnel start-up when fiberglass

curtains (which were used to confine radiant heat
to the surface of the array during radiant heating

tests) contacted tile radiant heat lamps, melted, and

dripped onto the array surface.

After the array was in the hypersonic flow for

about 20 see during test 20, the bolts holding the

lower leading edge cover plate to the panel holder (see
fig. 14) failed and allowed the plate to separate from

the panel holder. This failure choked the hypersonic
flow and caused the tunnel to unstart. A strong shock

wave of undefined strength (greater than 10 psia rise

in 0.2 see) passed through the test section and over

the array. The panels, which were designed to with-

stand only a pressure load of 2 psi, were completely
destroyed by the shock wave. Figure 29 shows the

remnants of the array and the locations of panels 1C,
1D, 2C, and 2D. The only components of the ar-

ray that survived the unstart were the aluminum

plate, Nomex felt, and various pieces, such as fas-

tener tubes, vehicle clips, titanium honeycomb sand-

wich panels, and thermoeouple lead wires. Scorching
of the Nomex felt strips occurred near the corners of

panels and at locations along the edges of some pan-

els. The longitudinal felt strips were more severely

scorched than the transverse strips. Although scorch-

ing of the felt could have occurred during the radiant
heating tests, previous tunnel tests, or unstarting of

the hypersonic flow, this scorching pattern suggests

that some forced convective heating occurred in the

gaps between panels during the tunnel tests. These

results support the conclusion stated previously in
the discussion of figure 26; that is, forced convec-

tive heating caused a rapid gap temperature increase
when the model was inserted into the flow.

Concluding Remarks

Superalloy honeycomb (SAHC) metallic thermal

protection system (TPS) panels, which were fabri-

cated with foil-gauge Inconel and titanium metals

and fiberous insulation, were subjected to thermal,

acoustic, and aerothermal tests. The panels had a
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massof 2.201lbm/ff2andcouldbemechanicallyat-
tachedto the primarystructureof anentry vehi-
cle. Thepurposeof tile testswasto assessthevi-
ability of the TPSconceptandto identifypossible
shortcomings.

A 2-panelarrayof SAHCTPSpanelswassub-
jected to 26 entry thermal-pressurecyclesthat
simulatedaSpaceShuttleentrytrajectoryat a loca-
tionon thevehiclewith amaximumsurfacetemper-
atureof 1900°F.Theresultsfrom theradiantheat-
ingtestsandthermalanalysesindicatethattheTPS
panelsrepeatedlylimitedthemaximumtemperature
of thealuminumprimarystructureto wellbelowthe
designlimit of 350°F.Thefiberousinsulationcon-
tainedwithin thepanelsdid not settleor changein
appearanceafteracoustictestingandradiantheat-
ingtesting.Cracks,observedaftercompletionof the
acoustictests,occurredin onesidewallthat wasnot
adequatelysupportedby Nomexfelt. No damage

occurred on the other seven sides of the two panels,
which were properly supported by the Nomex felt.

However, a definitive assessment of acoustic life of

the TPS panels would require further tests.

Aerothermal test results show that a 20-panel ar-

ray of SAHC TPS panels can successfully survive the

aerodynamic and thermal conditions of a hypersonic

flowstream. The panels were installed in a worst-case

orientation with the gaps parallel to the flow. This

orientation may have caused or contributed to the

hot gas flow that occurred in the gaps between the
panels. The existence of thermocouple wires in the

gaps between panels may have contributed to the gap

heating. Proposed design changes to eliminate gap

heating include avoiding placement of foreign mate-

rial (such as thermocouple wires) between panels, ori-
enting panels so that gaps are not parallel to the flow,

and using a packaged, compressible gap-filler mate-

rial between panels to block hot gas flow.

Results from these thermal, acoustic, and aero-

thermal tests show that the SAHC TPS panels can

repeatedly endure a realistic entry environment and

maintain their effectiveness. The panels limit the

primary-structure temperature as designed, have low
mass, and exhibit tolerance to damage in an aerother-

mal environment. Based on these tests, this thermal

protection system appears to be a viable candidate
for use on future hypersonic vehicles like the Space
Shuttle.

NASA Langley Research Center
Hampton, VA 23681-0001
November 24, 1992
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Table I. Test Summary for Two-Panel Array

Test cycle

0

1 16

Post cycle 16

17-25

26

Type of test

Coating cure

Radiant heating

Acoustic

Radiant heating

Radiant heating

Conditions

500OF

1900°F

15 rain, 161 dB

1900°F

2000°F

Comments

Surface coating cure

Design entry temperature and

pressure conditions

Acoustic conditions representative
of 25 missions

Design entry temperature

and pressure conditions

Design entry over-temperature

and pressure conditions
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TableII. TestSummaryfor 20-PanelArray in Langley8-FootHigh-TemperatureTunnel

Testcycle
12

36

78

10 11

12

13

14

15

16 17

1819

2O

Typeof test

tteat lampadjustment

Coatingcure

Radiantheating

Radiantheating

Radiantpreheating

Wind tunnel

Aerothermal

Aerothermal

Aerothermal

Aerothcrmal

Radiantpreheating

Aerothermal

Nominalmaximumsurface
temperature,°F

500

1900

2000

1900

1900

1900

1900

2000

2000

Comments

Noradiantheatingof panels

Surfacecoatingcure

Arraysurfaceradiantlyheated
to 1900°Fandhehtfor 200see

Arraysurfaceradiantlyheated
to 2000°Fandheldfor 200 sec

Array- surface radiantly preheated;
tunnel did not start

Tunnel check-out run; no array"
heating or insertion

Array in flow for 20 sec

Array in flow for 7 see

Array" in flow for 18 sec

Wedge, positioned above array to

induce shock impingenmnt, prevented
preheating the array. Panel thermal

expansion did not close gaps; data are

of academic interest only

Array surface radiantly preheated;
tunnel did not start

Array in flow for 20 sec; tunnel

flow broke down; model was destroyed
as a result of a high-pressure shock

Table III. Wind Tunnel Test Conditions for Aerothermal Tests

Test

13
14

15

20

Combustor

temperature,
oF

3000
3000

3000

3000

Combustor

pressure,

psia

3000
3000
3000

3000

Free-stream
Maeh

number

6.75
6.75

6.75

6.75

Local

Mach

numl)er

4.12

4.17
4.12

4.19

Free-stream

dynamic

pressure,

psi

11.37
11.37

11.37
11.37

Free-stream

Reynolds

number,
ft-I

1.68 x 106

1.68
1.68

1.68

Angle
of attack,

deg

16.8
16.4

16.8

16.3
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TableIV. ThermophysicalPropertiesof MaterialsUsedin Analysis

Temperature,
oR

Density,
lbm/in3

Specificheat,
Btu/lbm

Thermalconductivity,Btu/(sec-in-°R)

x-direction y-direction z-direction

460.0

560.0

660.0

860.0

1060.0

1260.0

1460.0

1660.0

1860.0

2060.0

2260.0

2470.0

Inconel 617 honeycomb-core sandwich

0.01505 9.7440 x 10 .2

0.1007

0.1040

0.1110

0.1170

0.1240

0.1310

0.1370

0.1440

0.1500

0.1566

0.1630

0.01505

0.01505

0.01505

0.01505

0.01505

0.01505

0.01505

0.01505

O.O15O5

0.01505

0.O1505

5.2756 x 10 .6

5.8985 x 10 6

6.6299 x 10 -6

7.9782 x 10 6

9.3241 x 10 -6

1.0671 x 10 -5

1.2014 x 10 .5

1.3326 x 10 -5

1.4682 x 10 .5

1.6006 x 10 .5

1.7327 x 10 .5

1.8651 x 10 .5

3.0045

3.4305

3.8565

4.7245

5.8148

7.1921

8.9028

1.1007

1.3560

1.6616

2.0227

2.4456

x 10 .6

x 10 .6

x 10 .6

x 10 .6

x 10 .6

x 10 .6

x 10 -6

x 10 .5

x 10 .5

x 10 -5

x 10 .5

x 10 -5

5.2756 x 10 .6

5.8985 x 10 -6

6.6299 x 10 .6

7.9782 x 10 6

9.3241 x 10 -6

1.0671 x 10 -5

1.2014 x 10 .5

1.3326 x 10 -5

1.4682 x 10 -5

1.6006 x 10 -5

1.7327 x 10 -5

1.8651 x 10 -5

Air

500.0
600.0

800.0

1000.0

1200.0

1400.0

1600.0

1800.0

2000.0

2200.0

2400.0

2600.0

4.6878 x 10 .7

4.6878 x 10 -7

4.6878 x 10 -7

4.6878 x 10 -7

4.6878 x 10 -7

4.6878 x 10 .7

4.6878 x 10 .7

4.6878 x 10 -7

4.6878 x 10 .7

4.6878 x 10 .7

4.6878 x 10 .7

4.6878 x 10 -7

0.2396

0.2403

0.2434

0.2486

0.2547

0.2611

0.2671

0.2725

0.2773

0.2813

0.2848

0.2878

3.3102 x 10 .7
3.8889 × 10 .7

4.9306 × 10 .7

6.0185 x 10 .7

6.9444 x 10 .7

8.1019 x 10 .7

9.0278 x 10 .7

9.9537 x 10 -7

1.0648 x 10 -6

1.1574 x 10 -6

1.2269 x 10 -6

1.3079 x 10 -6

3.3102

3.8889

4.9306

6.0185

6.9444

8.1019

9.0278

9.9537

1.0648

1.1574

1.2269

1.3079

x 10 .7

x 10 .7

x 10 .7

x 10 .7

x 10 .7

x 10 .7

x 10 .7

x 10 .7

x 10 -6

x 10 .6

xlO 6

x 10 .6

3.3102 x 10 .7

3.8889 x 10 -7

4.9306 x 10 -7

6.0185 x 10 .7

6.9444 x 10 -7

8.1019 x 10 -7

9.0278 x 10 -7

9.9537 x 10 -7

1.0648 x 10 -6

1.1574 x 10 6

1.2269 x 10 -6

1.3079 x l0 -6

Inconel 617foilsheet

520.0 0.3015 0.1000 1.8287 x 10 -4

1460.0 0.3015 0.1310 2.8704 x 10 -4

2470.0 0.3015 0.1630 4.0278 x 10 -4

Aluminum

460.0

560.0

660.0

760.0

860.0

960.0

1060.0

1660.0

0.1010

0.1010

0.1010

0.1010

0.1010

0.1010

0.1010

0.1010

0.1950

0.2060

0.2160

0.2240

0.2370

0.2420

0.250O

0.3070

1.50 x 10 -3

1.67 x 10 .3

1.85 x 10 .3

2.07 x 10 -3

2.29 x 10 .3

2.39 x 10 -3

2.42 x 10 .3

3.46 x 10 -3

1.50 x 10 .3

1.67 x 10 .3

1.85 x 10 .3

2.07 x 10 .3

2.29 x 10 .3

2.39 x 10 .3

2.42 x 10 .3

3.46 x 10 .3

1.50 x 10 -3

1.67 x 10 .3

1.85 x 10 .3

2.07 x 10 .3

2.29 x 10 .3

2.39 x 10 .3

2.42 x 10 .3

3.46 x 10 .3
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TableIV. Contimled

Temperature,
oR

460.0
560.0
660.0
860.0

1060.0
1260.0
1460.0
1960.0
2470.0

Density,
lbm/in3

Thermalconductivity,Btu/(sec-in-°R)
Specificheat,

Btu/lbm

0.01399
0.01399
0.01399
0.01399
0.01399
0.01399
0.01399
0.01399

Q-Fiber

x-direction y-direction z-direction

Titanium honeycomb-core sandwich

0.1400

0.1400

0.1400

0.1450

0.1480

0.1550

0.1660

0.1800

1.5069 × 10 -6
1.7685 × 10 -6

2.0440 × 10 -6

2.6227 × 10 -6

3.2708 × 10 -6

4.0602 × 10 -6

4.9745 × 10 -6

6.4954 × 10 -6

8.2320 × 10 -6

x 10-6

x 10-6

x 10-6

x 10-6

x 10-5

x 10-5

x 10-5

x 10-5

x 10 -5

7.7472 x 10 -6

7.7928 x 10 -6

7.9397 x 10 6

9.1790 x 10 -6

1.0592 x 10 -5

1.2006 x 10 -5

1.3469 x 10 -5

1.7031 x 10 -5

2.0620 x 10 -50.01399

7.7472
7.7928

7.9397

9.1790

1.0592

1.2006

1.3469

1.7031

0.1978 2.0620

felt insulation; Pressure = 7.5486 x 10 -5 psia

460.0

560.0

660.0

760.0

860.0

1060.0

1260.0

1460.0

1660.0

1860.0

1960.0

2060.0

2470.0

460.0

560.0

660.0

760.0

860.0

1060.0

1260.0

1460.0

1660.0

1860.0

1960.0

2060.0

2470.0

2.0255 x I0-3

2.0255 x 10-3

2.0255 x I0-3

2.0255 × I0-3

2.0255 x 10-3

2.0255 x 10-3

2.0255 x 10-3

2.0255 x 10-3

2.0255 x 10-3

2.0255 x 10-3

2.0255 x 10-3

2.0255 x 10-3

2.0255 x 10-3

0.1808

0.1913

0.2018

0.2113

0.2268

0.2466

0.2636

0.2726

0.2788

0.2811

0.2827

0.2844

0.2910

5.9374 x 10 -8
5.9374 x 10 -8

1.5313 x 10 7

2.4062 x 10 -7

3.3125 x 10 -7

5.6562 x 10 7

8.3438 x 10 -7

1.1375 x 10 -6

1.4876 x 10 -6

1.9468 × 10 -6

2.3906 x 10 -6

2.8312 x 10 -6

4.6005 x 10 -6

4.3981 x 10 -s
4.3981 x 10 -8

1.1343 x 10 -7

1.7824 x 10 -7

2.4537 × 10 -7

4.1898 × 10 -7

6.1806 x 10 -7

8.4259 x 10 -7

1.1019 x 10 -6

1.4421 x 10 -6

1.7708 x 10 -6

2.0972 x 10 -6

3.4078 x 10 -6

5.9374 x 10 -8

5.9374 x 10 -8

1.5313 x 10 -7

2.4062 x 10 -7

3.3125 x 10 -7

5.6562 × 10 -7

8.3438 x 10 -7

1.1375 x 10 -6

1.4876 x 10 -6

1.9468 x 10 -6

2.3906 x 10 -6

2.8312 x 10 -6

4.6005 x 10 -6

Q-Fiber felt insulation; Pressure = 1.9306 x 10 -4 psia

2.0255 x 10-3

2.0255 x i0-3

2.0255 x I0-3

2.0255 x 10-3

2.0255 x lO-3

2.0255 x 10 -3

2.0255 x 10 -3

2.0255 x 10 -3

2.0255 x 10 -3

2.0255 x 10 -3

2.0255 x 10 -3

2.0255 x 10 -3

2.0255 x 10 -3

0.1808
0.1913

0.2018

0.2113

0.2268

0.2466

0.2636

0.2726

0.2788

0.2811

0.2827

0.2844

0.2910

6.2500 x 10 -8
6.2500 x 10 -8

1.5625 x 10 -7

2.4376 x 10 .7

3.3438 x 10 -7

5.6562 x 10 -7

8.3438 x 10 -7

8.4259 x 10 -7

1.4876 x 10 -6

1.9499 x 10 -6

2.3906 x 10 -6

2.8312 x l0 -6

4.5938 x 10 -6

4.6296 x 10 -8

4.6296 x 10 -8

1.1574 x 10 -7

1.8056 x 10 -7

2.4769 x 10 .7

4.1898 x 10 .7

6.1806 x 10 .7

8.4259 x 10 .7

1.1019 x 10 -6

1.4444 x 10 .6

1.7708 x 10 .6

2.0972 x 10 .6

3.4028 x 10 .6

6.2500 x 10 -8

6.2500 x 10 -s

1.5625 x 10 -7

2.4376 x 10 -7

3.3438 x 10 -7

5.6562 x 10 -7

8.3438 x 10 -7

8.4259 x 10 -7

1.4876 x 10 -6

1.9499 x 10 -6

2.3906 x 10 6

2.8312 x 10 -6

4.5938 x 10 -6
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TableIV. Continued

Temperature,
oR

Density,

lbm/in 3

Specific heat,

Btu/lbm

Thermal conductivity, Btu/(sec-in-°R)
I

x-direction y-direction [ z-direction

Q-Fiber felt insulation; Pressure = 1.9340 x 10 .3 psia

460.0 2.0255 ×

560.0 2.0255 x

660.0 2.0255 x

760.0

860.0

1060.0

1260.0

1460.0

1660.0

1860.0

1960.0

2060.0

2470.0

10-3

10-3

10-3

2.0255 x 10 .3

2.0255 x 10 -3

2.0255 × 10 -3

2.0255 x 10 -3

2.0255 x 10 -3

2.0255 x 10 -3

2.0255 x 10 -3

2.0255 x 10 .3

2.0255 x 10 -3

2.0255 x 10 -3

Q-Fiber

0.1808

0.1913

0.2018

0.2113

0.2268

0.2466

0.2636

0.2726

0.2788

0.2811

0.2827

0.2844

0.2910

9.3749 x 10 -s

9.3749 × 10 -s

1.8437 x 10 -7

2.7188 x 10 -7

3.6250 x 10 -7

5.8751 x 10 -7

8.5625 x 10 -7

1.1562 x 10 -6

1.5094 x 10 -6

1.9844 x 10 -6

2.4062 x 10 -6

2.8281 x 10 -6

4.5156 x 10 -6

6.9444 x 10 -8

6.9444 x 10 -8

1.3657 x 10 -7

2.0139 x 10 -7

2.6852 x 10 -7

4.3519 x 10 -7

6.3426 x 10 -7

8.5648 x 10 -7

1.1181 × 10 .6

1.4699 x 10 -6

1.7824 x 10 -6

2.0949 x 10 -6

3.3449 x 10 -6

9.3749 x 10 -8

9.3749 x 10 -8

1.8437 × 10 -7

2.7188 × 10 -7

3.6250 x 10 -7

5.8751 x 10 -7

8.5625 x 10 -7

1.1562 x 10 -6

1.5094 x 10 -6

1.9844 x 10 -6

2.4062 × 10 -6

2.8281 x 10 -6

4.5156 × 10 -6

felt insulation; Pressure = 1.9340 x 10 -2 psia

460.0

560.0

660.0

760.0

860.0

1060.0

1260.0

1460.0

1660.0

1860.0

1960.0

2060.0

2470.0

460.0

560.0

660.0

760.0

860.0

1060.0

1260.0

1460.0

1660.0

1860.0

1960.0

2060.0

2470.0

2.0255 x 10 -3

2.0255 x 10 -3

2.0255 x 10 -3

2.0255 x 10 -3

2.0255 × 10 -3

2.0255 × 10 -3

2.0255 x 10 -3

2.0255 × 10 -3

2.0255 × 10 -3

2.0255 × 10 -3

2.0255 x 10 -3

2.0255 × 10 -3

2.0255 x 10 -3

0.1808

0.1913

0.2018

0.2113

0.2268

0.2466

0.2636

0.2726

0.2788

0.2811

0.2827

0.2844

0.2910

2.6563

2.6563

3.6250

4.5313

5.4375

7.6874

1.0313

1.3281

1.6687

2.1406

2.5624

2.9843

4.6718

Q-Fiber felt insulation Pressure

2.0255 x

2.0255 ×

2.0255 x

2.0255 x

2.0255 ×

2.0255 x

2.0255 ×

2.0255 ×

2.0255 ×

2.0255 x

2.0255 ×

2.0255 x

2.0255 ×

10-3

10-3

10-3

10-3

10-3

10-3

10-3

10-3

10-3

10-3

i0-3

10-3

10-3

0.1808

0.1913

0.2018

0.2113

0.2268

0.2466

0.2636

0.2726

0.2788

0.2811

0.2827

0.2844

0.2910

4.8438

4.8438

6.2813

7.6249

8.9062

1.1875

1.5094

1.8500

2.2282

2.7375

3.1718

3.6063

5.3437

x 10-7 1.9676 x

× 10-7 1.9676 x

x 10-7 2.6852 x

x 10-7 3.3565 x

x 10 -7 4.0278 x

x 10 -7 5.6944 x

x 10 -6 7.6389 x

x 10-6 9.8380 x

× 10 -6 1.2361 x

x 10 -6 1.5856 x

× lO -6 1.8981 x

x 10 -6 2.2106 x

10-7

10-7

10-7

10-7

10-7

10-7

10-7

10-7

10-6

10-6

10-6

10-6

2.6563 x 10 -7
2.6563 X 10 -7

3.6250 X 10 -7

4.5313 x 10 -7

5.4375 × 10 -7

7.6874 x 10 -7

1.0313 × 10 -6

1.3281 x 10 -6

1.6687 X 10 -6

2.1406 × 10 -6

2.5624 × 10 -6

2.9843 × 10 -6

x 10 -6 3.4606 x 10 -6 4.6718

= 1.9340 x 10 -1 psia

x I0-7

x 10.7

x 10.7

x 10-7

x 10-7

x 10-6

x 10-6

x 10-6

x 10 -6

x 10 -6

x 10 -6

x 10 -6

xlO 6

3.5880 x 10 -7
3.5880 x 10 .7

4.6528 x 10 -7

5.6481 × 10 -7

6.5972 x 10 -7

8.7963 × 10 -7

1.1181 × 10 -6

1.3704 × 10 -6

1.6505 × 10 -6

2.0278 × 10 -6

2.3495 x 10 -6

2.6713 × 10 -6

3.9583 × 10 -6

4.8438
4.8438

6.2813

7.6249

8.9062

1.1875

1.5094

1.8500

2.2282

2.7375

3.1718

3.6063

5.3437

x 10 -6

xlO 7

x i0-7

x 10-7

x 10-7

x 10-7

x 10-6

x 10-6

x 10-6

x 10-6

x 10 -6

x 10 -6

x 10 .6

x 10 -6
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TableIV. Continued

Temperature,
oR

Density,
lbm/in3

Q-Fiber

Thermalconductivity,Btu/(sec-in-°R)

Specificheat, ]Btu/lbm x-direction y-direction z-direction

felt insulation; Pressure = 9.6667 x 10 -1 psia

460.0

560.0

660.0

760.0

860.0

1060.0

1260.0

1460.0

I660.0

1860.0

1960.0

2060.0

2.0255 x I0 -3

2.0255 x 10 -3

2.0255 x 10 -3

2.0255 x lO -3

2.0255 x 10 -3

2.0255 x 10 -3

2.0255 x 10 3

2.0255 x 10 -3

2.0255 x 10 -3

2.0255 x 10 -3

2.0255 x 10 -3

2.0255 × 10 -3

x 10 -32470.0 2.0255

0.1808

0.1913

0.2018

0.2113

0.2268

0.2466

0.2636

0.2726

0.2788

0.2811

0.2827

0.2844

0.2910

5.2500 x 10 -7
5.2500 x 10 .7

6.8750 x 10 .7

8.3750 × 10 .7

9.8750 x 10 -7

1.3281 x 10 6

1.6906 x 10 .6

2.0782 x 10 -6

2.5063 x 10 -6

3.0656 x 10 -6

3.5219 x 10 -6

3.9782 x 10 -6

5.8034 × 10 -6

3.8889 x 10 -7

3.8889 x 10 -7

5.0926 x 10 -7

6.2037 × 10 -7

7.3148 x 10 -7

9.8380 x 10 -7

1.2523 x 10 .6

1.5394 × 10 .6

1.8565 x 10 .6

2.2708 x 10 .6

2.6088 x 10 -6

2.9468 x 10 -6

4.2988 × 10 -6

5.2500 x 10 -7

5.2500 x 10 -7

6.8750 x 10 -7

8.3750 × 10 .7

9.8750 x 10 .7

1.3281 x 10 .6

1.6906 × 10 .6

2.0782 x 10 .6

2.5063 x 10 .6

3.0656 × 10 -6

3.5219 × 10 .6

3.9782 × 10 6

5.8034 × 10 .6

Q-Fiber felt insulation; Pressure = 1.9333 psia

460.0

560.0

660.0

760.0

860.0

1060.0

1260.0

1460.0

1660.0

1860.0

1960.0

2060.0

2470.0

2.0255

2.0255

2.0255

2.0255

2.0255

2.0255

2.0255

2.O255

2.0255

2.0255

2.0255

2.0255

2.0255

× 10 -3

× 10 -3

× 10 -3

x 10 -3

x 10 -3

× 10 .3

x 10 -3

x 10 -3

× 10 -3

× 10 -3

x 10 -3

× 10 -3

x 10 -3

0.1808

0.1913

0.2018

0.2113

0.2268

0.2466

0.2636

0.2726

0.2788

0.2811

0.2827

0.2844

0.2910

5.3125 × 10 -7
5.3125 x 10 -7

6.9687 × 10 -7

8.5000 x 10 .7

1.0031 x 10 .6

1.3500 × 10 6

1.7219 x 10 6

2.1187 x 10 6

2.5562 x 10 -6

3.1281 x 10 .6

3.5906 x 10 .6

4.0531 × 10 .6

5.9031 x 10 -6

3.9352 × 10 -7

3.9352 × 10 -7

5.1620 × 10 -7

6.2963 × 10 -7

7.4306 × 10 -7

1.0000 × 10 -6

1.2755 × 10 -6

1.5694 x 10 .6

1.8935 x 10 .6

2.3171 × 10 .6

2.6597 x 10 -6

3.0023 × 10 -6

4.3727 x 10 -6

5.3125 × 10 -7

5.3125 x 10 -7

6.9687 × 10 -7

8.5000 × 10 -7

1.0031 x 10 -6

1.3500 x 10 -6

1.7219 × 10 -6

2.1187 × l0 -6

2.5562 x 10 -6

3.1281 x 10 -6

3.5906 × 10 -6

4.0531 × 10 -6

5.9031 × 10 -6

Q-Fiber felt insulation Pressure = 1.4700 x 101 psia

460.0

560.0

660.0

760.0

860.0

1060.0

1260.0

1460.0

1660.0

1860.0

1960.0

2060.0

2470.0

2.0255

2.0255

2.0255

2.0255

2.0255

2.0255

2.0255

2.0255

2.0255

2.0255

2.0255

2.0255

2.0255

x 10 -3

× 10 .3

x 10 -3

× 10 .3

x 10 -3

x 10 -3

× 10 -3

x 10 -3

× 10 -3

x 10 -3

x 10 -3

x 10 .3

x 10 -3

0.1808

0.1913

0.2018

0.2113

0.2268

0.2466

0.2636

0.2726

0.2788

0.2811

0.2827

0.2844

0.2910

5.3750 x 10 -7

5.3750 x 10 -7

7.0312 x 10 -7

8.5937 x 10 -7

1.0156 x l0 -6

1.3688 x 10 -6

1.7500 × 10 -6

2.1562 x 10 -6

2.6031 x 10 -6

3.1875 x 10 -6

3.6562 x 10 .6

4.1251 × 10 6

6.0002 x 10 -6

3.9815 x 10 .7

3.9815 × 10 -7

5.2083 x 10 -7

6.3657 × 10 -7

7.5231 × 10 -7

1.0139 x 10 6

1.2963 x 10 -6

1.5972 x 10 -6

1.9282 x 10 -6

2.3611 × 10 -6

2.7083 x 10 -6

3.0556 x 10 -6

4.4446 x 10 -6

5.3750 × 10 .7

5.3750 × 10 .7

7.0312 × 10 -7

8.5937 x 10 .7

1.0156 x 10 -7

1.3688 × 10 -6

1.7500 x 10 -6

2.1562 × 10 -6

2.6031 × 10 -6

3.1875 x 10 -6

3.6562 × 10 -6

4.1251 × 10 -6

6.0002 x 10 -6

20



TableIV. Continued

Temperature,
oR

Density,
lbm/in3

Specificheat,
Btu/lbm

Thermalconductivity,Btu/(sec-in-°R)

x-direction y-direction z-direction

Cerachrome insulation; Pressure = 7.5486 x 10 .5 psia

460.0
660.0

860.0

1060.0

1260.0

1460.0

1660.0

1860.0

2060.0

2260.0

2460.O

2660.0

2860.0

3.4722 x 10 -3

3.4722 x 10 -3

3.4722 x 10 -3

3.4722 x 10 -3

3.4722 x 10 -3

3.4722 x 10 -3

3.4722 x 10 -3

3.4722 x 10 -3

3.4722 x 10 -3

3.4722 x 10 -3

3.4722 x 10 -3

3.4722 x 10 -3

3.4722 x 10 -3

0.1648

0.1958

0.2268

0.2482

0.2640

0.2726

0.2789

0.2808

0.2839

0.2871

0.2902

0.2934

0.2965

1.3437 × 10 -7

1.3437 × 10 -7

3.3125 × 10 -7

5.4062 × 10 -7

7.9688 × 10 -7

1.153I x 10 -6

1.6563 x 10 -6

2.2063 × 10 -6

2.9063 × l0 -6

3.6123 × 10 -6

4.5812 × 10 -6

5.7094 × 10 -6

6.7906 x 10 -6

9.9537 x 10 -s

9.9537 × 10 -s

2.4537 × 10 -7

4.0046 × 10 -7

5.9028 × 10 -7

8.5417 × 10 -7

1.2269 × 10 -6

1.6343 x 10 -6

2.1528 x 10 -6

2.6758 × 10 -6

3.3935 × 10 -6

4.2292 × 10 -6

5.0301 x 10 -6

Ccrachrome insulation; Pressure = 1.9306 x 10 -4 psia

1.3437 × 10 -7
1.3437 × 10 -7

3.3125 x 10 -7

5.4062 × 10 -7

7.9688 x 10 -7

1.1531 × 10 -6

1.6563 x 10 -6

2.2063 × 10 -6

2.9063 × 10 -6

3.6123 × 10 -6

4.5812 × 10 -6

5.7094 × 10 -6

6.7906 x 10 -6

460.0

660.0

860.0

1060.0

1260.0

1460.0

1660.0

1860.0

2060.0

2260.0

2460.0

2660.0

2860.0

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

x 10 -3

× 10 -3

× 10 -3

× 10 -3

× 10 -3

× 10 -3

x i0 -3

× 10 -3

x 10 -3

x 10 -3

× 10 -3

x 10 -3

x 10 -3

0.1648

0.1958

0.2268

0.2482

0.2640

0.2726

0.2789

0.2808

0.2839

0.2871

0.2902

0.2934

0.2965

1.3437 x 10 -7

1.3437 × 10 7

3.3125 x 10 -7

5.4062 × 10 -7

7.9688 x 10 -7

1.1531 × 10 -6

1.6563 x 10 -6

2.2063 × 10 -6

2.9063 × 10 -6

3.6123 x 10 -6

4.5812 x 10 -6

5.7094 x 10 -6

6.7906 x 10 -6

9.9537 × I0 -s
9.9537 x 10 -8

2.4537 x 10 -7

4.0046 × 10 -7

5.9028 x 10 -7

8.5417 × 10 -7

1.2269 x 10 -6

1.6343 x 10 -6

2.1528 x 10 -6

2.6758 × 10 .6

3.3935 x 10 .6

4.2292 x 10 -6

5.0301 x 10 -6

1.3437 × 10 -7

1.3437 × 10 -7

3.3125 × 10 -7

5.4062 × 10 -7

7.9688 × 10 -7

1.1531 × 10 -6

1.6563 x 10 -6

2.2063 × 10 -6

2.9063 × 10 -6

3.6123 × 10 -6

4.5812 × 10 -6

5.7094 x 10 -6

6.7906 × 10 -6

460.0

660.0

860.0

1060.0

1260.0

1460.0

1660.0

1860.0

2060.0

2260.0

2460.0

2660.0

2860.0

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

Cerachrome insulation; Pressure = 1.9340 x 10 -3 psia

10-3
10-3

10-3

10-3

10-3

10-3

10-3

10-3

10-3

10-3

10-3

10-3

10-3

0.1648
0.1958

0.2268

0.2482

0.2640

0.2726

0.2789

0.2808

0.2839

0.2871

0.2902

0.2934

0.2965

1.5000 × 10 -7

1.5000 × 10 -7

3.4687 × 10 -7

5.5312 × 10 -7

8.0938 × 10 -7

1.1656 × 10 -6

1.6687 × 10 -6

2.2187 × 10 -6

2.9156 × 10 -6

3.6219 x 10 -6

4.5907 × 10 -6

5.7156 × 10 -6

6.7968 × 10 -6

1.1Ill × 10 .7

1.1111 × 10 -7

2.5694 × 10 -7

4.0972 x 10 .7

5.9954 × 10 .7

8.6343 × 10 .7

1.2361 × 10 .6

1.6435 x 10 .6

2.1597 × 10 .6

2.6829 × 10 .6

3.4005 × 10 .6

4.2338 × 10 -6

5.0347 × 10 -6

1.5000 × 10 -7
1.5000 × 10 -7

3.4687 x 10 -7

5.5312 x 10 -7

8.0938 × 10 .7

1.1656 × 10 -6

1.6687 × 10 -6

2.2187 x 10 -6

2.9156 × 10 .6

3.6219 × 10 -6

4.5907 × 10 -6

5.7156 x 10 -6

6.7968 × 10 6
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TableFVLContinued

Temperature,
oR

Density,
lbm/in3

Specificheat,
Btu/lbm

Thermalconductivity,Btu/(sec-in-°R)

x-direction y-direction z-direction

Cerachrome

460.0

660.0

860.0

1060.0

1260.0

1460.0

1660.0

1860.0

2060.0

2260.0

2460.0

2660.0

2860.0

3.4722
3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

x 10.3

x 10.3

x 10.3

x 10-3

x 10.3

x 10-3

x 10-3

x 10.3

x 10-3

x 10.3

x 10.3

x 10-3

x 10-3

Cerachrome

insulation; Pressure = 1.9340 x 10 -2 psia

0.1648

0.1958

0.2268

0.2482

0.2640

0.2726

0.2789

0.2808

0.2839

0.2871

0.2902

0.2934

0.2965

2.7500 x 10 .7

2.7500 x 10 .7

4.6875 x 10 -7

6.6875 x 10 -7

9.1876 x 10 .7

1.2687 x 10 -6

1.7688 x 10 6

2.3126 × 10 .6

3.0063 x 10 .6

3.7094 x 10 -6

4.6751 x 10 6

5.7969 x 10 -6

6.8750 x 10 -6

2.0370 x 10 .7

2.0370 x 10 .7

3.4722 x 10 .7

4.9537 x 10 -7

6.8056 x 10 -7

9.3981 x 10 -7

1.3102 x 10 -6

1.7130 x 10 6

2.2269 x 10 -6

2.7477 x 10 -6

3.4630 x 10 -6

4.2940 x 10 -6

5.0926 × 10 -6

2.7500 x 10 .7

2.7500 x 10 .7

4.6875 x 10 -7

6.6875 x 10 .7

9.1876 x 10 .7

1.2687 x 10 .6

1.7688 x 10 .6

2.3126 x 10 .6

3.0063 x 10 .6

3.7094 x 10 6

4.6751 x 10 -6

5.7969 x 10 -6

6.8750 x 10 -6

insulation; Pressure = 1.9340 x 10 -1 psia

460.0
660.0

860.0

1060.0

1260.0

1460.0

1660.0

1860.0

2060.0

2260.0

2460.0

2660.0

2860.0

3.4722
3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

x 10.3

x 10-3

x 10-3

x 10-3

x 10.3

x 10.3

x 10.3

xlO 3

x 10.3

x 10.3

x 10-3

x 10 .3

x 10 -3

0.1648

0.1958

0.2268

0.2482

0.2640

0.2726

0.2789

0.2808

0.2839

0.2871

0.2902

0.2934

0.2965

5.5625 x 10 .7
5.5625 x 10 .7

8.1563 x 10 .7

1.0688 x 10 6

1.3531 x 10 -6

1.7281 x 10 -6

2.2437 x 10 -6

2.8000 x 10 .6

3.4969 x 10 .6

4.2031 x 10 6

5.1687 x 10 .6

6.2906 x 10 .6

7.3687 x 10 .6

4.1204 x 10 .7

4.1204 x 10 .7

6.0417 x 10 .7

7.9167 x 10 .7

1.0023 x 10 .6

1.2801 x 10 .6

1.6620 x 10 .6

2.0741 x 10 .6

2.5903 x 10 .6

3.1134 x 10 .6

3.8287 x 10 .6

4.6597 x 10 .6

5.4583 x 10 .6

5.5625 x 10 -7

5.5625 x 10 -7

8.1563 x 10 .7

1.0688 x 10 -6

1.3531 x 10 -6

1.7281 x 10 -6

2.2437 x 10 -6

2.8000 x 10 .6

3.4969 x 10 -6

4.2031 x 10 -6

5.1687 x 10 -6

6.2906 x 10 -6

7.3687 x 10 -6

Cerachrome insulation Pressure = 9.6667 x I0 -1 psia

460.0

660.0

860.0

1060.0

1260.0

1460.0

1660.0

1860.0

2060.0

2260.0

2460.0

2660.0

2860.0

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

x 10.3

x 10.3

x 10.3

x 10.3

x 10.3

x 10-3

x 10.3

x 10.3

x lO-3

x 10.3

x 10-3

x 10-3

x lO-3

0.1648

0.1958

0.2268

0.2482

0.2640

0.2726

0.2789

0.2808

0.2839

0.2871

0.2902

0.2934

0.2965

6.4375 x 10 .7

6.4375 x 10 .7

9.5625 x 10 .7

1.2594 x 10 .6

1.6000 x 10 -6

2.0281 x 10 6

2.5938 x 10 -6

3.1969 x 10 -6

3.9438 x 10 -6

4.6906 x 10 -6

5.6969 x 10 -6

6.8531 x 10 -6

7.9657 × 10 .6

4.7685 x 10 .7

4.7685 x 10 .7

7.0833 x 10 .7

9.3287 x 10 -7

1.1852 x 10 -6

1.5023 x 10 .6

1.9213 x 10 -6

2.3681 x 10 -6

2.9213 x 10 -6

3.4745 x 10 -6

4.2199 x 10 -6

5.0764 x 10 -6

5.9005 x 10 -6

6.4375 x 10 .7

6.4375 x 10 .7

9.5625 x 10 .7

1.2594 x 10 .6

1.6000 x 10 -6

2.0281 x 10 -6

2.5938 x 10 -6

3.1969 x 10 6

3.9438 x 10 -6

4.6906 x 10 -6

5.6969 x 10 .6

6.8531 x 10 -6

7.9657 x 10 -6
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TableIV. Concluded

Temperature,
°R

Density,
lbm/in3

Specificheat,
Btu/lbm

Thermalconductivity,Btu/(sec-in-°R)
,

x-direction y-direction I z-direction

Cerachrome insulation; Pressure -- 1.9333 psia

460.0 3.4722

660.0 3.4722

860.0

1060.0

1260.0

1460.0

1660.0

1860.0

2060.0

2260.0

2460.0

266O.0

2860.0

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

x 10 -3

x 10 -3

x 10 -3

x 10 -3

x 10 -3

× 10 -3

x 10 -3

x 10 -3

x 10 -3

x 10 -3

× 10 -3

x 10 -3

x 10 -a

Cerachrome

0.1648

0.1958

0.2268

0.2482

0.2640

0.2726

0.2789

0.28O8

0.2839

0.2871

0.2902

0.2934

O.2965

insulation;

6.5938 x 10-7

6.5938 x 10-7

9.7813 x 10-7

1.2937 x 10-6

1.6469 x 10-6

2.0906 x lO-6

2.6688 x 10-6

2.2875 × 10-6

4.0500 x 10 -6

4.8125 x 10 -6

5.8344 x 10 -6

7.0093 x 10 -6

8.1437 x 10 -6

4.8843 ×

4.8843 x

7.2454 ×

9.5833 ×

1.2199 x

1.5486 x

1.9769 x

2.4352 ×

3.0000 ×

3.5648 ×

4.3218 ×

5.1921 ×

6.0324 x

10-7

10-7

10-7

10-7

10-6

10-6

10-6

10-6

10-6

10-6

10-6

10-6

10-6

6.5938 × 10-7

6.5938 × 10-7

9.7813 × 10-7

1.2937 x 10-6

1.6469 × lO-6

2.0906 x 10-6

2.6688 × 10-6

2.2875 x 10-6

4.0500 x 10-6

4.8125 x 10-6

5.8344 × 10-6

7.0093 x lO-6

8.1437 x 10-6

Pressure = 1.4700 x 101 psia

460.0

660.0

860.0

1060.0

1260.0

1460.0

1660.0

1860.0

2060.0

2260.0

2460.0

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

3.4722

× 10-3

x 10-3

× 10-3

x 10-3

x 10-3

× 10-3

× 10-3

× 10-3

x lO-3

x lO-3

x 10-3

0.1648

0.1958

0.2268

0.2482

0.2640

0.2726

0.2789

0.2808

0.2839

0.2871

0.2902

6.7188 x 10 -7

6.7188 x 10 -7

1.0000 × 10 -6

1.3281 × 10 -6

1.6937 x 10 -6

2.1500 × 10 -6

2.7468 x 10 -6

3.3843 x 10 -6

4.1656 x 10 -6

4.9469 × 10 -6

5.9906 x 10 -6

4.9769 x

4.9769 x

7.4074 ×

9.8380 x

1.2546 x

1.5926 x

2.0347 x

2.5069 x

3.0856 x

3.6644 x

4.4375 x

10-7

10-7

10-7

10-7

10-6

10-6

10-6

10-6

10-6

10-6

10-6

6.7188 × 10-7

6.7188 × 10-7

1.0000 × 10-6

1.3281 × 10-6

1.6937 × 10-6

2.1500 × 10-6

2.7468 × 10-6

3.3843 x 10 -6

4.1656 x 10 -6

4.9469 x 10 -6

5.9906 x 10 -6

2660.0

2860.0

460.0

860.0

1060.0

2470.0

3.4722

3.4722

0.0071

0.0071

0.0071

0.0071

× 10-3

x 10-3

0.2934

0.2965

0.290

0.290

0.290

0.290

7.1875 × 10 -6

8.3438 x 10 -6

RTV/Nomex felt

4.2100 x 10 -7

5.2500 x 10 -7

8.8000 x 10 -7

1.7634 x 10 -6

5.3241 x

6.1806 x

4.2100 x

5.2500 ×

8.8000 x

1.7634 x

10-6

10-6

10-7

10-7

10-7

10-6

7.1875 x 10-6

8.3438 × 10-6

4.2100 × 10 -7

5.2500 × 10 -7

8.8000 x 10 -7

1.7634 x 10 -6
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TableV. RadiationProperties

Temperature,°R

520.0
2470.0

Emissivity I Absorptivity
Inconel617foil shcet

0.85 [ 0.850.85 0.85
Blackbody

520.0 [ 1.00 t 1.002470.0 1.00 1.00

Reflectivity

0.15

0.15

0.00

0.00
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1200

Temperature,
T,°F

800

400

Surface temperature

Static pressure

Lowercenterline7 f'_ I
Body point 7 [J _ I

400 800 1200
0

0 1600 2O0O

Time, t, sec

15

10

Figure 1. Entry surface tcmpcrature and static pressure histories. Shuttle body point 1300;
14414.1C.

Pressure,
P, psia

trajectory
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Inconel 617 plug --_

\
F Overhanging lip

120 _ 120_ 5typicalInconel 617 honeycomb _" ...._'Q'-_ -- _)

Core thickness = 0.280 _.,.J, I_ (_)_'_." 2.35

Face sheet thickness = 0.005 ---__ "_ 'q_ ,6_ _.__

Titaniumhoneycomb I'; IIli [ ..J_..' _.__"_

!Core thickness = 0.170 1,_-,1|' " lnconel 617 beaded
Face sheet thickness = 0.006 I ' F,- _ .._ pl '

side closure• , _, . Thickness = 0.003

__ Cerachrome

insulation, 6 Ib/ft 3

Underhanging lip Q-Fiber felt
insulation, 3.5 Ib/ft 3

Through-panel fastener assembly ---./

(a) Schematic.

12.(

12.0

L-82-8795

(b) Fabricated panel.

Figure 2. Superalloy honeycomb prepackaged thermal protection system panel. Dimensions are in inches unless
otherwise noted.
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 c,VehlC'c uCl'e"
L

- Panel clip (adjacent panel)
- Bayonet

Through-panel
Inconel 617
tube

Shoulder bolt

Teflon
washer

B.F. Goodrich

Rivnut

(Section A-A)

lnconel 617
plug

Cerachrome
insulation

Q-Fiber felt
insulation

Vehicle
structure

(a) Bayonet-clip attachment. (b) Through-panel fastener.

Figure 3. Metallic thermal protection system attachment concepts.
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Panel 2
Panel 1

Aluminum Pl

Figure 4. Two-panel array before application of surface coating.

L-82-8801
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6

6

Panel 2

2.675

Figure 5. Thermocouplc locations for two-panel array. Dimensions are in inches.
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Figure 6. Locations of panels, fasteners, and Nomex felt used in the 20-panel array. Dimensions are in inches.
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Figure 7. Thermocouple and pressure instrumentation locations for the 20-panel array.
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Figure 8.

L-81-245

Radiant heating test chamber at Johnson Space Center.

_Fiberfrax board insulation _ Two-panel
\ array /-- Aluminum

fNomexfelt _ /plate

I _ _ V//_J__/Y/J////J/////4 W_/_/////_//t////////J ---.- _---__1
_ l,N,I;iCI21 1,1_i t'l,l'i.i'l'l't I [ II'i'i I I'l'J I ,,!,J _A" 'i ...... I "_'_-_""1

_ LI-900spacer _ _

insulation _ k.. Panel holder

"- Micro quartz insulation
_-- Fiberfrax insulation

Figure 9. Section view of test model containing support structure and two-panel array.
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Figure 10. Metallic thermal protection system acoustic test assembly.
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Figure 11. Acoustic spectrum for tests on two-panel array.
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(b) Model position during preheat. (c) Model position during test.

Figure 12. Schematic of Langley 8-Foot High-Temperature Tunnel. Dimensions are in feet.
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Figure 13. Typical temperature history of panel surface used in Langley 8-Foot High-Temperature Tunnel.

Diffuser exit

High-emittance
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Rigid high-temperature j
insulation

L-83-9521

Figure 14. The 20-panel array and panel holder installed in the 8-Foot High-Temperature Tunnel.
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Fig_ire i5. Finite-element thermal model of two-panel array.
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(a) Q-Fiber felt insulation. (Data from refs. 5 and 17-19.)
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(b) Cerachrome insulation. (Data from refs. 5, 17, and 20.)

Figure 16. Effective thermal conductivity of insulation (through the thickness) at atmospheric pressure.
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Figure 17. Surface temperature distribution of two-panel array; cycle 5, t = 620 sec.
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Figure 18. Measured thermal performance of two-panel array. Dimensions are in inches.
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Figure 19. Calculated and measured temperatures for two-panel array. Dimensions are in inches.
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White discoloration

.............. thermocouples

Figure 20. Two-panel array before testing.
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Figure 21. The 2-panel array after 26 thermal-pressure cycles.
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Figure 25. Temperature history at center of panel 2C of 20-panel array during test 13.
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Attachment plug --- ..................
removed ---

Figure 27.

L-83-12449

Surface damage intentionally imposed on 20-panel array.

L-83-12439

Figure 28. The 20-panel array in tile Langley 8-Foot High-Temperature _Smnel, test 20.
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Figure 29. The 20-panel array after test 20.
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